YOUNG AUSTRALIAN MINES LIMITED

Level 11, 100 Edward Street Brisbane, Queensland 4000

> GPO Box 3160, Brisbane Queensland 4001

Telephone +61 7 3033 0900

Email info@yamines.com.au ABN 32 103 295 521

9 July 2024

YAML's Spinifex Ridge Molybdenum-Copper Project Mineral Resource Restatement Under JORC Code (2012)

Young Australian Mines Ltd (YAML) (which was named Moly Mines Ltd (MOL) until 2018) has owned the Spinifex Ridge molybdenum-copper project (Spinifex Ridge Project) since 2004. The Spinifex Ridge Project resource has to date been reported in accordance with the 2004 edition of the Joint Ore Reserves Committee "Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code) and the Canadian National Instrument 43-101 (being the Canadian Standards of National Disclosure for Mineral Projects) (NI 43-101) and the ASX Listing Rules when MOL was on ASX's official list. In undertaking a gap analysis and valuation of the Spinifex Ridge Project, SRK Consulting recommended that work be undertaken to report the Spinifex Ridge Project mineral resource in accordance with the 2012 edition of the JORC Code (the JORC Code (2012)) as that would generally be required for the purposes of any valuation of the Spinifex Ridge Project.

YAML is now pleased to announce a restatement of the Spinifex Ridge Project resource in accordance with JORC Code (2012) and attaches a copy of the report entitled "Spinifex Ridge Resource Statement 2024" (the **Spinifex Ridge 2024 Resource Statement**) which has been prepared by ERM International Group Limited (**ERM**).

The preparation of the Spinifex Ridge 2024 Resource Statement entailed a review of the previous work that had been done on the Spinifex Ridge Project and updated that work so as to be in compliance with the reporting requirements of JORC Code (2012) using the resource block model constructed in 2008 and an updated pit optimisation. The restated mineral resource as set out in the Spinifex Ridge 2024 Resource Statement is presented in the following table:

Classification	Million Tonnes	Mo (%)	Cu (%)	Ag (g/t)
Measured	204.7	0.06	0.10	1.5
Indicated	366.2	0.04	0.08	1.2
Inferred	158.9	0.04	0.07	1.2
Total	729.8	0.05	0.08	1.3

Notes to foregoing resource table:

- 1. The Mineral Resource is estimated with all drilling data available at 31 July 2008.
- 2. The Mineral Resource is reported in accordance with the 2012 Edition of the JORC Code.
- 3. The Competent Person is Phil Jankowski FAusIMM of ERM.
- 4. The Mineral Resources are constrained by an optimised pit shells using a metal price of USD16.6/lb Mo and USD3.75/lb Cu, and a revenue factor of 1.5 and are reported at a molybdenum (Mo) equivalent cutoff of 350 parts per million (ppm) Mo.
- 5. Rounding may lead to minor apparent discrepancies.

For comparison purposes, the 2008 mineral resources reported under the 2004 JORC Code and NI 43-101 are tabled below.

Classification	Million Tonnes	Mo (%)	Cu (%)	Ag (g/t)
Measured	206.8	0.06	0.10	1.5
Indicated	445.5	0.04	0.07	1.2
Inferred	399.0	0.04	0.07	1.2
Total	1,051.3	0.04	0.08	1.3

Changes in the quantity of the various categories of resources mainly reflect the impact of the application of a cutoff grade in the new resource estimate.

It is important to note that all information which is material to understanding the reported estimates of mineral resources for the Spinifex Ridge Project in relation to the following matters:

- geology and geological interpretation;
- sampling and sub-sampling techniques;
- drilling techniques; and
- the criteria used for classification,

are all contained in the Spinifex Ridge 2024 Resource Statement prepared by ERM.

The information in this announcement that relates to Mineral Resources is based on information compiled by Mr Phil Jankowski, who is an employee of ERM and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Jankowski has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Jankowski consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Spinifex Ridge Resource Statement 2024 M45/1095-I,M45/1096-I,M45/1164-I

PREPARED FOR

Young Australian Mines NL

DATE 25 March 2024

REFERENCE YAMMRE01

DOCUMENT DETAILS

DOCUMENT TITLE	Spinifex Ridge Resource Statement 2024
DOCUMENT SUBTITLE	M45/1095-I,M45/1096-I,M45/1164-I
PROJECT NUMBER	YAMMRE01
Date	25 March 2024
Version	01
Author	Phil Jankowski
Client name	Young Australian Mines NL

DOCUMENT HISTORY

				ERM APPR	OVAL TO ISSUE	
VERSION	REVISION	AUTHOR	REVIEWED BY	NAME	DATE	COMMENTS
Version	01	Phil Jankowski	Sonia Konopa	Patrick Maher	25 March 2024	
	02	Phil Jankowski			06 May 2024	

SIGNATURE PAGE

Spinifex Ridge Resource Statement 2024 M45/1095-I,M45/1096-I,M45/1164-I YAMMRE01

Electronic signature not for duplication. Electronic signature not for duplication. Electronic signature for suplication. Jectronic signature not for duplication. Electronic signature not for duplication.

Phil Jankowski Principal Consultant Resource Geology Electronic signature not for duplication. Electronic signature of duplication. Electronic signature not for duplication. Electronic signature not for duplication. Electronic signature not for duplication.

Sonia Konopa Consultant Director ANZ

Patrick Maher Manager – Eastern Australia & Pac-Rim ANZ

ERM Australia Level 3 1 Havelock Street, West Perth, WA 6005 T +61 8 6467 1600

© Copyright 2024 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

CONTENTS

1.	GSWA BIBLIOGRAPHIC DATA SHEET	2
2.	INTRODUCTION	3
3.	LOCATION AND ACCESS	3
4.	TENEMENTS	4
5.	GEOLOGY	5
6.	DRILLING	6
7.	RESOURCE MODELLING	10
8.	METALLURGY	16
9.	RESOURCE OPTIMISATION	17
10.	RESOURCE STATEMENT	18
11.	COMPETENT PERSON STATEMENT	19

APPENDIX A JORC TABLE 1

APPENDIX B DRILLHOLE DATABASE

LIST OF T	TABLES	
TABLE 1	SPINIFEX RIDGE TENEMENTS FROM DMIRS WEBSITE	4
TABLE 2	SPINIFEX RIDGE DRILLING USED IN THE RESOUREC	9
TABLE 3	SPINIFEX RIDGE OPTIMISATION BASIS OF DESIGN	18
TABLE 4	SPINIFEX RIDGE MINERAL RESOURCE 25 MARCH 2024	19

LIST OF FIGURES

FIGURE 1	SPINIFEX RIDGE LOCATION	4
FIGURE 2	SPINIFEX RIDGE DRILLHOLE LAYOUT PLAN	10
FIGURE 3.	VIEW FROM SOUTHEAST OF DRILLING, BLOCK MODEL, RESOURCE PIT	12
FIGURE 4.	PLAN VIEW OF DRILLING, BLOCK MODEL, RESOURCE PIT	12
FIGURE 5.	CROSS SECTION 768 7750MN, DRILLING, BLOCK MODEL, RESOURCE PIT	13
FIGURE 6.	CROSS SECTION 768 7500MN, DRILLING, BLOCK MODEL, RESOURCE PIT	13
FIGURE 7.	CROSS SECTION 768 7250MN, DRILLING, BLOCK MODEL, RESOURCE PIT	14
FIGURE 8.	CROSS SECTION 198 500ME, DRILLING, BLOCK MODEL, RESOURCE PIT	14

FIGURE 9.	CROSS SECTION 198 750ME, DRILLING, BLOCK MODEL, RESOURCE PIT	15
FIGURE 10.	CROSS SECTION 199 000ME, DRILLING, BLOCK MODEL, RESOURCE PIT	15
FIGURE 11.	CROSS SECTION 199 250ME, DRILLING, BLOCK MODEL, RESOURCE PIT	16
FIGURE 4	SPINIFEX RIDGE RESOURCE SENSITIVITY	19

EXECUTIVE SUMMARY

The Spinifex Ridge Mo-Cu Project was first identified in 1969, and various operators continued exploration and resource development work for several decades, but the relatively low grade and depressed Mo price meant that no mining was attempted.

In 2005 Moly Mines Limited ("Moly") commenced an exploration and resource development drilling program, encouraged by recent increases in global Mo prices. At July 31 2008, the resource stood at a total of 1.05 Bt @ 0.05% Mo, 0.08% Cu and 1.2g/t Ag; this resource was reported in conformity with the Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101"). Moly completed a definitive feasibility study but the project did not proceed due to economic conditions.

In 2018, Moly Mines Limited changed its name to Young Australian Mines Limited. This report is a restatement of the Mineral Resource Estimate, using the resource block model constructed in 2008 and an updated pit optimisation; the resource is tabulated below reported at a Mo equivalent cutoff of 350 ppm, in the revenue factor 1.5 optimised pit shell.

The total quantum of the resource is highly sensitive to the revenue assumptions; increasing the price assumptions will increase the size of the optimal pit, but lower the mean grade.

Classification	Million Tonnes	Мо ррт	Cu ppm	Ag ppm
Measured	204.7	600	999	1.5
Indicated	366.2	405	767	1.2
Inferred	158.9	399	703	1.2
Total	729.8	458	818	1.3

SPINIFEX RIDGE MINERAL RESOURCE 25 MARCH 2024

Notes to Resource Table:

- 1. The Mineral Resource is estimated with all drilling data available at 31st July 2008.
- 2. The Mineral Resource is reported in accordance with the JORC Code 2012 Edition.
- 3. The Competent Person is Phil Jankowski FAusIMM of ERM.
- 4. The Resources are constrained by an optimised pit shells using a metal price of USD16.6/lb Mo and USD3.75/lb Cu, and a revenue factor of 1.5 and are reported at a Mo equivalent cutoff of 350 ppm Mo.
- 5. Rounding may lead to minor apparent discrepancies.

The information in this report that relates to Mineral Resources is based on information compiled by Mr Phil Jankowski, who is an employee of ERM and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Jankowski has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Jankowski consents to the inclusion in this website of the matters based on this information in the form and context in which it appears.

1. GSWA BIBLIOGRAPHIC DATA SHEET

Project Name	Spinifex Ridge
Combined Reporting Number	
Tenement Numbers	M45/1095-I, M45/1096-I, M45/1164-I
Tenement Holder	Moly Metals Australia Pty Ltd
Tenement Operator	Young Australia Mines Ltd
Report Type	Mineral resource
Report Title	Spinifex Ridge Resource Statement 2024
Report Period	
Date of Report	01 May2024
Author/Position	Phil Jankowski, Principal Consultant Resource Geology
Operator Contact Details	
Address	
Email	
1:250 000 Map Sheet	Yarrie (SF51-1)
1:100 000 Map Sheet	Muccan 2956
Geodetic Datum	GDA94
Project Zone	51
Target Commodities	Molybdenum, Copper, Silver
Prospects Drilled	Spinifex Ridge
PoW Numbe	
Geophysical Survey Registration Number	
List of Assays	Ag, Cu,Mo

2. INTRODUCTION

The Spinifex Ridge Mo-Cu Project is located approximately 50km northeast of Marble Bar in the Pilbara region of Western Australia. The deposit was first identified in 1969 after stream sediment sampling by Anglo American Corporation Australia, who subsequently completed further sampling, mapping, costeaning and drilling. After they relinquished the project in 1973, further operators continued exploration and resource development work, but the relatively low grade and depressed Mo price meant that no mining was attempted.

In 2005 Moly Mines Limited commenced an exploration and resource development drilling program, encouraged by recent increases in global Mo prices. At July 31 2008, the resource stood at a total of 1.05Bt@ 0.05% Mo, 0.08% Cu and 1.2g/t Ag; this resource was reported in conformity with the Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101") and the CIM Mineral Resource and Mineral Reserve definitions referred to in NI 43-101; the Qualified Person was Phil Jankowski.

In 2018, Moly Mines Limited changed its name to Young Australian Mines Limited after the acquisition of Queensland Mining Corporation Ltd and the White Range copper project. This report is a restatement of the Mineral Resource Estimate, using the resource block model constructed in 2008 and an updated pit optimisation.

3. LOCATION AND ACCESS

The Project is located at Latitude 20° 53' 15" S and Longitude 120° 6' 35" E, approximately 50 km northeast of the town of Marble Bar and 140 km east-southeast of the major port and regional town of Port Hedland (population 15,000) in the East Pilbara Shire (Figure 1). It is accessed by the sealed Port Hedland to Marble Bar Road for 155km, then 29km on the unsealed Bamboo Creek Road.

The topography of the site is mainly gently undulating open spinifex-covered hills (elevation 160 to180 mASL) with a sharp linear, east-west iron formation ridge bounding the northern side of the deposit area (elevation 300 to 320 mASL). A dry watercourse traverses the deposit from the southwest to the northeast, which breaks through the ridge through the gorge of Coppin Gap and flows during periods of high rainfall. The undulating hills are covered in low lying spinifex grass with eucalyptus gums and smaller trees occupying the creeks and watercourse. The area is generally sparsely vegetated.

The climate is sub-tropical to semi-arid with a mean annual rainfall of 360 mm (280 mm at Marble Bar) which falls during a marked wet season between December and March. Much of the rainfall in the wet season is derived from tropical cyclones, several of which affect the area each year. The maximum daily rainfall recorded in Marble Bar from a cyclonic event is 304 mm. Mean temperatures range between 26 °C to 41 °C in January (summer), and 12 °C and 27 °C in July(winter). Exploration activities can be maintained throughout the year although the hot and wet conditions of the summer months may reduce productivity.

FIGURE 1 SPINIFEX RIDGE LOCATION

4. TENEMENTS

The Project comprises three granted mining tenements, registered to Moly Metals Australia Pty Ltd (Moly Metals), a wholly owned subsidiary of Young Australian Mines Ltd. The tenements cover a collective area of 1,438 Ha, and have an annual expenditure commitment for the upcoming 12 month period of \$143,900 (Table 1). Moly Metals gained formal approval for the project under the Western Australian Environmental Protection Act 1986 on 5 August 2008. Due to falling commodity prices the Spinifex Ridge Molybdenum Project has not been implemented, and the project was suspended in November 2008. An extension of the approval was granted by the Minister for Environment on 2 September 2013. On 30 June 2017 Moly Metals formally requested and were granted further extension of the timeline for commencement.

Tenement	Area	Grant	Expiry	Commitment
M45/1164-I	553.0899Ha	03/10/2007	02/10/2028	\$55,400
M45/1095-I	509.9063Ha	15/03/2007	14/03/2028	\$51,000
M45/1096-I	374.9705Ha	15/03/2007	14/03/2028	\$37,500

TABLE 1 SPINIFEX RIDGE TENEMENTS FROM DMIRS WEBSITE

5. GEOLOGY

Spinifex Ridge is an Archaean low-fluorine porphyry molybdenum deposit. These deposits are characterized by stockworks of molybdenite-bearing quartz veinlets and fractures hosted by intermediate to felsic intrusive and associated country rocks. These deposits originate from large volumes of magmatic, highly saline aqueous fluids under pressure. Multiple stages of brecciation related to explosive fluid pressure release from the upper parts of small intrusions result in deposition of ore and gangue minerals in crosscutting fractures, veinlets and breccias in the outer carapace of the intrusions and in associated country rocks.

The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is atypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 50 to 80 m wide, up to 200m thick and is about 120 m below the current topographic surface. It strikes to the northwest and plunges to the southeast at about 35°, is about 500 m long and open to the southeast. The country rocks comprise mafics, ultramafics and felsic volcanics, and dip to the north at about 75°.

Molybdenite mineralisation extends in a radial pattern away from the intrusion for up to 400 m; high grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenum and copper sulphide grains. Mo grades tend to increase with increasing vein density. Disseminated Cu sulphides are also formed in the wallrock.

The mineralised veins vary from mm to cm scale and have a preferred orientation to the northwest and northeast at variable dips forming a conjugate set. Surface outcrop shows the veins to be tens of metres in length. The veins are typically quartz dominated with accessory potassium feldspar. Sulphides are found in vein selvages or as large irregular blebs internal to the vein. In the more distal part of the mineralization molybdenite veins may be virtually devoid of quartz. Mo and Cu grades are broadly correlated, although controlled individually to some extent by host lithology.

Potassic alteration is preserved as potassium-feldspar veins, the replacement of plagioclase with potassium feldspar and pervasive biotite alteration at the periphery of the high grade core. Biotite alteration is especially well developed and preserved in the mafic rocks. Phyllic alteration at Spinifex Ridge is the dominant alteration assemblage and is manifested by intense to very intense sericite alteration that surrounds the silicic and potassium zones.

The dominant ore carrying sulphide species are molybdenite (MoS_2) and chalcopyrite ($CuFeS_2$). Silver is closely related to copper possibly substituting into the matrices of tetrahedrite ($Cu_{12}Sb4S_{13}$). Non-ore sulphides include pyrrhotite and subordinately pyrite/marcasite (FeS₂) which often form in the interstitial regions of the pillow lavas. Rare sphalerite ((Zn,Fe)S), galena (PbS), stibnite (Sb_2S_3) and native copper have also been observed. Tungsten occurs as scheelite (CaWO₄) and is mainly orange in colour.

6. DRILLING

Several companies before Moly Mines including AAA, ESSO and AMAX have undertaken drilling at Spinifex Ridges, for a total of 40 holes for 14,537.15 m, comprising predominantly diamond drill core. The majority of the holes drilled by ESSO were NQ in size but BQ core was drilled if drilling conditions were difficult. Percussion drilling was used sparingly by ESSO.

Moly Mines drilled an additional 401 drill holes for 56,236.43 m of which 30,684.93 were drilled using diamond coring and the remainder has been drilled using RC. These include:

- Resource diamond holes which were drilled with RC pre-collars to depths of around 60 m, followed by HQ core to 120 m and then NQ to final depth (400 to 450 m).
- PQ sized diamond holes for a 20 t bulk metallurgical sample.
- Re-entry holes, which have been used to increase hole depths when warranted by end of hole geochemistry.
- Resource infill holes using RC drilling to depths of 250 m.
- Sterilization RC drilling to depths of 50 m.
- Infill RC drilling to depths of 300 m.
- Geotechnical drill holes using HQ triple tube have also been completed to gather information to determine pit wall angles, ground stability for plant infrastructure sites and tunnel stability.
- RC drilled water bore holes for water level baseline studies.

ESSO and AMAX split the diamond core using a manual core splitter at 3 m downhole intervals. Half was retained in the tray and the other half was sent for assaying; Moly Mines used an electric core saw to provide a consistent sample size. The 2 m or 3 m RC composite samples from Esso were assayed by Associated Laboratories of Australasia, Exserve Pty Ltd, Amdel or Pilbara Laboratories for Cu, Mo and Ag by conventional AAS. Analabs assayed the samples from AMAX holes NGD028-NGD031 for Mo using mixed acid digest and AAS determination and XRF. AMAX determined an average correlation of the two methods of 97%, but when Mo grades >1,000 ppm the correlation was 80%, with XRF Mo assays higher than AAS Mo. Other elements assayed included Pb, Zn and Ag using AAS. Sn and W were analysed using pressed pellet XRF, and Au by Aqua Regia digest and AAS finish.

CRM and QA completed by ESSO indicates that both Amdel and Pilbara Laboratories were generating accurate and precise assays.

Broad composite sample intervals are acceptable for this style of porphyry-related mineralization because the molybdenum mineralization is encountered over hundreds of metres in and around the granodiorite intrusive.

Moly Mines completed an initial analytical quality assurance orientation study to determine the most appropriate method of analysis at ALS Chemex, using their Perth and Brisbane laboratories. Mo was assayed by pressed pellet XRF; and Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, P, Pb, S, Sb, Sr, Ti, V, W and Zn using a mixed acid digest and ICP finish.

Original and copied reports, drill sections, maps, internal memoranda and analytical laboratory reports pre 2004 were acquired and drilling data digitally entered; no inspection of drill core was possible to verify geological logging or reproduce assay results as it had been destroyed or lost over the years. Visual inspections were made of the historical drill hole logs to check significant mineralized intercepts and correlate mineralisation and alteration with the digital assay files. The highest Mo and Cu value in each hole were referenced against original paper drill log sheets for description of mineralization and against drill sections prepared by ESSO. Another 10 drill hole intercepts were selected at random and cross-referenced in the above manner for geological/mineralogical description in comparison to drill log assays and drill section assays. In the process of database verification, additional assays were obtained for three diamond holes at depth. These were included in paper logs but not transferred to drill sections. These assays (based on approximately 70 m worth of drilling) were added to the digital files. Drilling and surveying data was supplied to, or internally generated by, MOL, under the supervision of Dr Derek Fisher, and has not been independently verified. The data as supplied was internally consistent and accorded with the written descriptions prepared historically. A key issue addressed during the early development of the Spinifex Ridge Project was the veracity of the historic drill data as a basis for resource estimation and the appropriateness of combining this data with newly acquired drill data in future resource assessments.

Drill holes occurring within the central high grade zone of the deposit (Appendix 17) The key findings are: there is some conditional bias exhibited by the historical drilling. Additionally, a relative bias exists between pressed pellet XRF and mixed acid digest, with XRF being higher at all grade ranges by an average of 8%. This bias has been identified in earlier quality assurance analysis, and it is recommended XRF be used as the primary molybdenum assay technique. In summary, the mean grades are within 10% and with due care during estimation, there are no significant reasons why the two data sets should not be used.

ESSO holes were surveyed using high quality survey maps drafted from orthophoto base maps. MOL converted these co-ordinates to the Map Grid of Australia system (MGA), and also located and re-surveyed some of the collar positions using a differential global positioning system (DGPS) with an accuracy of +/- 10 mm in the X, Y and Z fields. MOL drill holes were sited with an accuracy of +/- 10 m using a GPS in conjunction with historical survey controlled base maps. Once drilled, the holes were then surveyed using a DGPS to an accuracy of +/- 10 mm, as the steel RC drill rods affect the camera compass. For this resource estimate the detailed Surtron surveys are used in preference to the Eastman downhole surveys but when no detailed information is available the Eastman shots are then used.

Moly Mines twinned 3 holes previously drilled by ESSO. The results from the twinned holes have replicated the results of the previous drilling. The 3 m sample intervals from diamond core were chosen to replicate the sample length used previously by ESSO and AMAX.

Examination of the drilling practices, sample recovery and sampling methods used were considered to be equal to, or better than current industry practice. In addition Moly Mines designed and implemented a rigorous program of QA/QC to ensure sampling and assaying is both accurate and precise. This program has included certified standards, field duplicates, laboratory duplicates, blanks and secondary analysis. The QA/QC procedures at Spinifex Ridge have provided a high quality dataset, which is considered accurate and precise, and is appropriate for resource estimation.

DRILLING

The subset of the drillholes used in the resource estimate are tabulated in Table 2; the interpreted surface geology and drillhole layout are shown in Figure 2.

TABLE 2 SPINIFEX RIDGE DRILLING USED IN THE RESOURCE

Company	Year	Holes	Туре	Metres
AAA	1970	5	Diamond	1,245.46
ESSO	1975	6	Diamond	2,571.4
	1976	15	Diamond	6,789.1
	1977	4	Diamond	1,664.1
AMAX	1980	2	Diamond	500
		SRD050-SRD071 (23)	RC Pre-collars, HQ & NQ diamond core	10,042.75
		SRD074-SRD082(9)	RC Pre-collars, HQ & NQ diamond core	3,915.4
	2005	NGD025 Depth ext	NQ diamond core	308.8
		SRD085-SRD086 (2)	RC Pre-collars, HQ & NQ diamond core	963.9
		WB001-WB002 (2)	RC (water bores)	126
		SRC054,58,59 (3)	RC (sterilisation)	150
	2006	SRC093-SRC111 (19)	RC deep	4,754
		SRC113 - SRC129 (17)	RC deep	5,373.8
Mahr		SRC131-SRC140 (10)	RC Infill	2,756
Mines		GTD001 (1)	HQ geotechnical core	219.8
		GTD003-GTD014 (12)	HQ geotechnical core	2,536.9
		GTD016-GTD018 (3)	HQ geotechnical core	708.55
		GTD022 & GTD024 (2)	HQ geotechnical core	476.4
	2007	GTD066 & GTD067 (2)	HQ geotechnical core	382
		SRC142 & SRC143 (2)	RC Infill	396
		SRC205 - SRC207 (3)	RC Infill	557
		SRC209 & SRC210 (2)	RC Infill	372
	2008	SRD091-SRD96 (6)	NQ Diamond core	2,705.8
		SRD100-SRD101	NQ Diamond Core	1018.9
		Additional DD tails	NQ Diamond Core	2240.4
Total		152 holes		52,274.6

FIGURE 2 SPINIFEX RIDGE DRILLHOLE LAYOUT PLAN

Source: Young Australia Mines

7. RESOURCE MODELLING

All drill holes in the database were composited to 5 m downhole. The 5 m composite length was chosen to match the probable bench height of the proposed open pit mine. Assays composited were Mo, Ca and Ag.

A set of Leapfrog shell was generated from the composites at a range of cutoffs from cut-offs from 180 ppm Mo to 1,000 ppm Mo. The composite values were smoothed according to the results of a downhole variogram of the Mo values. A moderate degree of anisotropy was used to elongate the shells in the assumed strike and dip directions (elongated 1.5 times striking 310° grid and 1.5 times dipping 80° to 050° grid). The range of shells was examined to choose those that seemed to best correspond to an outer, low grade shell and an inner, high grade zone. The values that were chosen for these were 180 ppm Mo and 920 ppm Mo respectively. The 180 ppm shell was selected to be below the economic cut-off. The deposit has not been closed off at lower cut-offs in any direction except to the north. The 920 ppm shell was chosen as it closely followed the size and shape of the upper part of the granodiorite intrusion. The shells were trimmed against the top of fresh rock DTM.

This use of grade-controlled shells is appropriate for this style of mineralization, where the grade diminishes gradually from a high grade core outwards, without a strong known outer contact

known from the current dataset. The uncertainty in the position of the outer edge of the mineralisation is reflected in the classification of blocks at the edges as Inferred.

The composites were then coded into the High Grade and Low Grade zones, which were used as hard boundaries in the estimation.

A Surpac block model was constructed, and the proportion of the High Grade and Low Grade was coded into each block. The total ore for each block was calculated by adding these two proportions; the final block grades of the three metals is the weighted average of the individually estimated grades for each domain present in a block.

Grades were estimated into a block model by Ordinary Kriging of downhole composites within interpreted mineralised domains.

The block size of 50 m X by 50 m Y by 5 m Z was chosen to correspond to the densest part of the drilling grid and to be the same height as the expected bench height of the proposed open pit. The plan for the directional variograms was oriented to the assumed elongation of the mineralized body, striking 310° grid, dipping 80° to 050° grid and plunging 30° to the north.

Kriging parameters used were based on the results of the Mo neighbourhood analysis, but they were also adopted for the other two estimated elements of copper and silver. The discretisation scheme was chosen to represent 5 m spacing in all three directions.

After the initial Kriging runs, a small number of blocks in the Low Grade zone did not receive a Mo, Cu or Ag value. These were assigned values of 200 ppm Mo, 300 ppm Cu and 1.0 g/t Ag based on the average grade of samples.

The weathered densities were assigned from a very limited number of downhole density measurements and should be considered preliminary only. However as there is no Oxide or Transition ore this has no impact on the Mineral Resource.

Blocks in the model have been classified based largely on the slope of regression. To validate the block model estimate, basic visual checks were carried out. All blocks with a proportion of either High Grade or Low Grade were inspected to ensure they had values for all of the estimated metals. The volumes estimated for the input wireframes were compared to the sum of the block proportions. For both the High Grade and Low Grade zones the two figures were within 2% of each other.

The average grades of the estimates were compared to the average grades of the input composites. In each case the difference was within an acceptable limit.

In addition, the input data was compared against the Measured plus Indicated block estimates for each metal in the Low Grade Zone in 100 m X and 100 m Y slices. These show that the grade trends in the input composites are reasonably matched by the estimate given the expected level of smoothing in the kriging estimation.

Orthogonal, plan and section views of the data, block model (coloured by resource classification) and resource reporting pit are presented in Figure 3 to Figure 11.

FIGURE 3. VIEW FROM SOUTHEAST OF DRILLING, BLOCK MODEL, RESOURCE PIT

Red: Measured; Yellow; Indicated; Green: Inferred

FIGURE 4. PLAN VIEW OF DRILLING, BLOCK MODEL, RESOURCE PIT

Red: Measured; Yellow; Indicated; Green: Inferred

FIGURE 5. CROSS SECTION 768 7750MN, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 6. CROSS SECTION 768 7500MN, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 7. CROSS SECTION 768 7250MN, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 8. CROSS SECTION 198 500ME, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 9. CROSS SECTION 198 750ME, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 10. CROSS SECTION 199 000ME, DRILLING, BLOCK MODEL, RESOURCE PIT

FIGURE 11. CROSS SECTION 199 250ME, DRILLING, BLOCK MODEL, RESOURCE PIT

8. METALLURGY

Six PQ diamond core holes were drilled across the deposit to produce approximately 20 t of PQ drill core for bench scale test work and process plant piloting. Other samples from resource drill holes were used to provide samples for preliminary work and variability testing. Seven bulk samples were prepared from the six PQ diamond core samples to represent the three main rock types at varying grades for comminution and flotation piloting. Metallurgical test work included the following:

- Standard comminution testing on three representative lithology composites, including Unconfined Compressive Strength, Abrasion Index, Bond Ball Mill Work Index and Bond Rod Mill Work Index.
- Semi-Autogenous (SAG) milling amenability testing on a sample of full drill core including Advanced Media Competency Testing, Crushing Work Index on feed and media competency survivors, JK Drop Weight Tests, Standard Rod and Ball Work Indices and Abrasion Index.
- High Pressure Grinding Roll ("HPGR") amenability testing on a representative bulk composite sample.
- Mineralogy of feed and concentrates using Optical, X-ray Diffraction and QEM-SCAN techniques.
- Preliminary rougher flotation test work, including reagent evaluation and grind size optimization, conducted on representative samples from each of the three lithological composites.
- Differential flotation and cleaning test work on an estimated Life of Mine (LOM) composite with the objective of producing a high molybdenum grade, low copper grade molybdenite concentrate that will meet market requirements.

The results from the metallurgical test work have shown:

- The Spinifex Ridge ore is generally hard, abrasive and competent. The Bond Ball Mill Work Indices range from 20 to 26 kWh/t.
- SAG mill testing indicates that the competent nature of the ore requires two or three stage crushing rather than a simple primary crushing and SAG mill circuit. HPGR testing has shown that the ore is amenable to the high pressure grinding roll technique.
- Mineralogical examinations show that the ore mineralogy is not complex. Nearly all the molybdenite is in easily liberated coarse grains. The amount of interlocking minerals is generally low. Copper mineralization is nearly all in chalcopyrite with rare tetrahedrite.
- Rougher flotation and grind size optimization test work indicate that a coarse grind of 80% passing 280 µm can be used in the roughing stage with little loss of metal recovery. Overall roughing recovery for molybdenum is in excess of 90%.

Bulk ore samples were processed in a continuous processing pilot plant. Approximately 20 t of ore were treated. Two blends of crushed core samples totalling approximately 15 tonnes were then processed. The recovery of Mo in the Cu-Mo bulk roughing/scavenging flotation was satisfactory at approximately 89%-92% for the two blends, confirming bench scale testing. The Mo concentrate grade for one blend was over 50% Mo for periods of stable operation and for the other blend approximately 40% Mo. The copper circuit was piloted separately to molybdenum and involved one stage of roughing and two stages of cleaning at an elevated pH of 11.5. Survey samples were taken at the optimum float conditions. The copper recovery at the optimum fine grind was satisfactory at 79% of copper in feed to the circuit. The measured Cu concentrate grade for the period of optimum operation was 25.1% Cu.

Mo concentrates require very low impurity levels within the concentrates to provide global access to the down-stream processors. For Spinifex Ridge concentrates, the most important impurities and their maximum allowable levels are copper (0.4%), lead (0.04%) and arsenic (0.02%). Ferric chloride leaching process is the only commercially proven process for the selective removal of copper present as chalcopyrite. A ferric chloride leaching test work program was carried out by Idesol in Chile in conjunction with field visits to operational plants at Los Pelambres and Nos in Chile. Copper and arsenic levels can be readily reduced to acceptable levels using the ferric leaching process.

9. RESOURCE OPTIMISATION

To assess reasonable prospects for eventual economic extraction (RPEEE), a pit optimisation process was performed using the GEOVIA Whittle[™] software. Pit optimisation input parameters were extracted from the previous studies or from ERM's database, these parameters include:

- Overall pit slope angles
- Mining cost, benchmarked by ERM
- Potential ore handling and processing costs, benchmarked by ERM
- Processing recoveries
- Product revenues
- Selling costs
- Royalties.

The Basis of Design (BoD) containing the optimisation input parameters is presented in Table 3 below:

TABLE 3 SPINIFEX RIDGE OPTIMISATION BASIS OF DESIGN

Item	Unit	Value
Metal Price for Mo	AU\$/t	54,895 (16.6USD/lb)
Metal Price for Cu	AU\$/t	12,500 (3.75USD/lb)
Mining Recovery/Dilution	%	From reblocking model to 25x25x10
Mo Recovery	%	84.0
Cu Recovery	%	64.0
Mo Product Losses	%	1.25 processing loss
Cu Product Losses	%	3.50 processing loss
Processing cost (processing, labour, smelting and G&A)	AUD/t ore	16.45
Mining cost of material mined	AUD/t mined	4
Overall Slope Angle (OSA)	degree	43
Government royalty - Mo	%	5.0
Government royalty - Cu	%	5.0
Other Royalties (Native Title)	%	1.0
Kallenia Mines Royalty	A\$/t	0.02
Model		spinifex_ridge_june2008.mdl
Resource Category		Measured, Indicated & Inferred

From these metal price and recovery parameters, a Mo equivalent grade net smelter return was calculated to take into account the Cu content. The equation is:

NSR = (Mo * 0.054895 * 0.8257) + (Cu * 0.0125 * 0.605)

A block cutoff of NSR\$15.86/t was adopted, equivalent to a Mo only grade of 350 ppm Mo.

10. RESOURCE STATEMENT

The Spinifex Ridge resource is tabulated in Table 4. The resource is reported at a Mo equivalent cutoff of 350 ppm, in the revenue factor 1.5 optimised pit shell i.e. assuming a 50% revenue uplift from the base case.

The total quantum of the resource is highly sensitive to the revenue assumptions, which are largely weighted to the achieved molybdenum grade. Increasing the price assumptions will increase the size of the optimal pit, but lower the mean grade as the larger pits capture the lower grade material laterally and vertically away from the high grade core of the deposit.

As an assessment of the sensitivity of the resource to the price assumptions, the resource tonnage by the three revenue factor assumption (1.0, 1.5 and 2.0) are presented in Figure 12.

TABLE 4SPINIFEX RIDGE MINERAL RESOURCE 25 MARCH 2024

Classification	Million Tonnes	Mo ppm	Cu ppm	Ag ppm
Measured	204.7	600	999	1.5
Indicated	366.2	405	767	1.2
Inferred	158.9	399	703	1.2
Total	729.8	458	818	1.3

Notes to Resource Table:

- 1. The Mineral Resource is estimated with all drilling data available at 31^{st} July 2008
- 2. The Mineral Resource is reported in accordance with the JORC Code 2012 Edition.
- 3. The Competent Person is Phil Jankowski FAusIMM of ERM
- 4. The Resources are constrained by an optimised pit shells using a metal price of USD16.6/lb Mo and USD3.75/lb Cu, and a revenue factor of 1.5 and are reported at a Mo equivalent cutoff of 350 ppm Mo.
- 5. Rounding may lead to minor apparent discrepancies.

FIGURE 12 SPINIFEX RIDGE RESOURCE SENSITIVITY

11. COMPETENT PERSON STATEMENT

The information in this report that relates to Mineral Resources is based on information compiled by Mr Phil Jankowski, who is an employee of ERM and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Jankowski has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to

qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Jankowski consents to the inclusion in this website of the matters based on this information in the form and context in which it appears.

APPENDIX A JORC TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The resource estimate is based on a mixture of reverse circulation and diamond drillhole samples, generally taken on 1m downhole intervals and assayed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report.	
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Several companies before Moly Mines including AAA, ESSO and AMAX have undertaken drilling at Spinifex Ridges, for a total of 40 holes for 14,537.15 m, comprising predominantly diamond drill core. The majority of the holes drilled by ESSO were NQ in size but BQ core was drilled if drilling conditions were difficult. Percussion drilling was used sparingly by ESSO.
		Moly Mines drilled an additional 401 drill holes for 56,236.43 m of which 30,684.93 were drilled using diamond coring and the remainder has been drilled using RC. These include:
		 Resource diamond holes which were drilled with RC pre-collars to depths of around 60 m,followed by HQ core to 120 m and then NQ to final depth (400 to 450 m).
		 PQ sized diamond holes for a 20 t bulk metallurgical sample.
		 Re-entry holes, which have been used to increase hole depths when warranted by end of hole geochemistry.

Criteria	JORC Code explanation	Commentary
		 Resource infill holes using RC drilling to depths of 250 m.
		$_{\odot}$ Sterilization RC drilling to depths of 50 m.
		$_{\odot}$ Infill RC drilling to depths of 300 m.
		 Geotechnical drill holes using HQ triple tube have also been completed to gather information to determine pit wall angles, ground stability for plant infrastructure sites and tunnel stability.
		\circ RC drilled water bore holes for water level baseline studies.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Average drillcore recovery is 99%, with much of the core presenting as coherent sticks. The average RQD (percentage of core in pieces >10cm) is 78%.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All drill samples have been logged for lithology, texture, alteration and mineralisation. The rock types are well defined and have ben logged consistently and are able to be modelled into plausible geological domains.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation	ESSO and AMAX split the diamond core using a manual core splitter at 3 m downhole intervals. Half was retained in the tray and the other half was sent for assaying. However, AMAX considered that molybdenite loss might be a significant factor so the entire core for CGD028 was submitted for assay with only 5 cm intervals retained for future reference from each matre
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Moly Mines used an electric core saw to provide a consistent sample size and preserve the remaining core for future reference. The 2 m or 3 m RC composite samples were dried and weighed. 2. Samples < 3.0 kg were pulverized in an LM5 with a standard steel grinding bowl until 85% passed 75 μ m. Additional grind tests carried out on the initial sample dispatch and subsequent batches showed that the optimum pulverizing time is 8 - 10 minutes. The coarse reject was retained for 90 days. Three pulps were split off for analysis. A similar process was undertaken for samples
		 > 3.0 kg but the initial sample was split into two samples < 3.0 kg, pulverized and then totally homogenized in the LM5 before the 3 smaller pulps were split out for assay. Broad composite sample intervals are acceptable for this style or porphyry-related mineralization because the molybdenum mineralization is encountered over hundreds of metres in and around the granodiorite intrusive.
		RC pre-collar drilling company generated two

Criteria	JORC Code explanation	Commentary
		sample products. The first was a large 25 kg to 35 kg bulk sample and the second is a 3kg riffle split sample from the bulk sample for each metre drilled. MOL gathered 2m composite samples with a plastic spear from the riffle split 1m samples. This 2 kg to 3 kg sample was then sent to ALS Chemex for further sample preparation. MOL retains all bulk and 1m split samples on site. MOL staff completed this sampling.
		Three metre ½ diamond core composite sample After logging and photography, the core was sampled by halving using an electric core saw on 3 m sample lengths. These samples were sent to Karratha for further sample preparation by ALS Chemex. The remaining half core is stored on site. When the un-oriented core was initially marked up an effort was made to ensure that the centre line split the most representative structures or mineralized quartz vein sets to ensure a representative sample. Further quarter core samples have been taken for metallurgical testwork and a small proportion of samples have also been gathered for thin section and presentation purposes. These locations are marked on the core trays. MOL staff completed this sampling.
		Three metre composite RC riffle and cone split samples. Additional deep infill RC drilling was undertaken in 2006. In order to be consistent with the 3m diamond core composites (50:50) and combining 3 consecutive 1m samples. Each one metre sample was derived by riffle splitting (12.5:87.5 splitter) the 25-30 kg bulk sample directly from the rig. Thus each 1 m sample weighs between 2.0 kg to 3.0 kg. So when three 1m samples are split and combined this yielded a 2.5 kg to 3.5 kg sample which was then sent to the Karratha laboratory for further preparation by ALS Chemex. This procedure was modified slightly during the 75 m infill RC drilling program early in 2006 as a cone splitter was used to composite 3 consecutive 1m samples directly from the drill rig. This method was deemed more suitable as it involved less handling of the sample.
		Moly has carried out the sampling for both the RC and diamond drilling programs in a representative and thorough manner adopting current industry best practices.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For holes SRD001-006 ESSO used Associated Laboratories of Australasia and Exserve Pty Ltd for assaying drill core samples. For holes NGD007 to NGD027 ESSO sent two 250 g samples to Amdel and Pilbara Laboratories in
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis	Perth and Wittenoom respectively. Both labs assayed for Cu, Mo and Ag by conventional AAS. Amdel also analysed for W and

Criteria JORC Code explanation

including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

Commentary

completed cross-checks on molybdenum using XRF. CRM and QA completed by ESSO indicates that both Amdel and Pilbara Laboratories were generating accurate and precise assays. Analabs assayed the samples from AMAX holes NGD028-NGD031 for Mo using mixed acid digest and AAS determination and XRF. AMAX determined an average correlation of the two methods of 97%, but when Mo grades >1,000 ppm the correlation was 80%, with XRF Mo assays higher than AAS Mo. Other elements assayed included Pb, Zn and Ag using AAS. Sn and W were analysed using pressed pellet XRF, and Au by Aqua Regia digest and AAS finish.

Moly Mines completed an initial analytical quality assurance orientation study to determine the most appropriate method of analysis at ALS Chemex, using their Perth and Brisbane laboratories. Mo was assayed by pressed pellet XRF; and Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, P, Pb, S, Sb, Sr, Ti, V, W and Zn using a mixed acid digest and ICP finish.

As no suitable certified molybdenum sulphide standards were available in Australia, Moly Mines produced its own standard reference material with the assistance of Ore Research and Exploration Pty Ltd. Using old drill core stored in 44 gallon drums on site and recent RC drill spoil, two 100 kg samples of material were collected to make a high and low grade standard.

The old core was examined and only pieces with visible molybdenum or copper sulphides were selected for the high grade standard. RC pre-collar drill spoil was collected from the 1 m drill spoil bags from depths >10 m.

The bulk samples were then sent to Ore Research and Exploration Pty Ltd in Melbourne who prepared the samples, before sending them back in sealed 40 g sachets. Two company standards were created this way and these have been named SRRX01 and SRDL01 which have recommended values of 255 ppm (+/- 5 ppm) and 778 ppm (+/- 25 ppm) Mo respectively.

For RC pre-collars SRD050 to SRD079 a SRM sample was inserted into the sample sequence every 25th sample. The SRM used were either OREAS43p or OREAS44p both of which were purchased from Ore Research and Exploration Pty Ltd. These multi element standards are oxidized and were composited from a number of Australian sources, and have recommended molybdenum values of 127 ppm and 217 ppm respectively.

The SRM molybdenum results for the June-July 2005 drill program show that, in general, process variation is in control, however a small bias (2.5 to 4% low) exists with the XRF

Criteria	JORC Code explanation	Commentary
		analyses and a slightly larger bias (4.5 to 6.5% low) exists with the mixed acid digest analyses.
		In addition, weights of RC samples average 2.74 kg, which is within the target range, as is sizefraction percent passing 75 μ m which averages 92%, safely above the target of 85%. No field duplicates or blanks were used in this round of pre-collar RC drilling.
		Further RC drilling was carried out between December 2005 and early 2006 has also been assessed; the quality control protocol varied slightly in 2006. In addition to the insertion of SRM, blanks and field duplicates were incorporated. The insertion rate for all quality control materials over a 100 sample interval is as follows:
		• 20 SRM
		• 40 Duplicate
		• 60 SRM
		• 80 Duplicate
		• 100 Blank
		The duplicate field splits show acceptable repeatability and the SRM was in control.
		Additional RC drilling carried out between March 2006 and June 2006. The quality control report concluded that field duplicates returned lower Mo grades by an average of 5.3%; a cyclical trend was observed in the results reported for blank samples and SRM; SRM SRDL01 is consistently overcalled by ALS Chemex; and internal ALS Chemex laboratory duplicates are in control.
		The blanks were sourced from river gravel at the Spinifex Ridge site, so it is doubtful that

the Spinifex Ridge site, so it is doubtful that they were actually completely blank; this may explain the positive Mo and Cu values returned from them. Several of the individual SRM Mo assays are outside the acceptance range, and these batches should be reassayed, although the effect on the resource estimate is likely to be minor.

The SRM certification shows that the laboratories used to generate the accepted value returned widely varying values; as a consequence, the accuracy of the accepted value of SRDL01 as SRM needs to be assessed.

The repeatability of the field splits is of an order that can be expected given the nature of the mineralization and the low number of duplicate pairs (52).

RC Drill programs conducted between October 2006 and April 2008 comprised a phase of resource RC drilling, sterilisation drilling for planned infrastructure, water bore

Criteria	JORC Code explanation	Commentary
		drill holes for ongoing environmental monitoring, diamond tails to previous RC or DD holes, geophysical targeted drilling and two resource based diamond holes.
		The quality control report concluded field duplicate dataset was small however the results support the sub-sampling splitting process.
		Blank sample dataset is small but values are either below detection limit or very low, suggesting negligible contamination is occurring in sample preparation.
		Internal ALS Chemex laboratory duplicates are in control.
		Data derived using XRF at the primary laboratory is replicated by the secondary laboratory.
		Data derived from using ICP at the primary laboratory is up to 15% higher than that of the secondary laboratory. This may have more to do with the ICP process than internal issues at the primary laboratory.
		Analysis of the lower grade SRM indicates absolute bias is negligible but is in the order of +/- 3% in the higher SRM. This has been identified in previous QA/QC reports and maybe related to the way the SRM has been certified. Some periods of relative bias are observed in the ICP SRM data.
		Diamond drill programs conducted between October 2006 and February 2008 comprised a phase of drilling designed to locate the outer boundaries of the mineralization and angle geotechnical holes to assess rock quality and strengths for pit design,nfrastructure foundations or tunnel specifications. Not all of the GTD series holes were assayed for Mo. The quality control report concluded internal ALS Chemex laboratory duplicates are in control. Data derived using XRF at the primary laboratory is replicated by the secondary laboratory. Data derived from using ICP at the primary laboratory is 15% higher than that of the secondary laboratory. This may have more to do with the ICP process than internal issues at the primary laboratory.
		Analysis of the lower grade SRM indicates absolute bias is negligible but is in the order of 3 to 4% in the higher SRM. This has been identified in previous QA/QC reports and may be related to the way the SRM has been certified.
		Some periods of relative bias are observed in the ICP SRM data. All data confirm the notion of XRF being a superior analytical process with respect to process control and precision.

Criteria	JORC Code explanation	Commentary
		It is inherently difficult to include duplicates and blanks into a diamond core quality control protocol. Therefore no comment can be made on precision (other than internal laboratory duplicates) or issues related to contamination.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Original and copied reports, drill sections, maps, internal memoranda and analytical laboratory reports pre 2004 were acquired and drilling data digitally entered; no inspection of drill core was possible to verify geological logging or reproduce assay results as it had been destroyed or lost over the years. Visual inspections were made of the historical drill hole logs to check significant mineralized intercepts and correlate mineralisation and alteration with the digital assay files. The highest Mo and Cu value in each hole were referenced against original paper drill log sheets for description of mineralization and against drill sections prepared by ESSO. Another 10 drill hole intercepts were selected at random and cross-referenced in the above manner for geological/mineralogical description in comparison to drill log assays and drill section assays. In the process of database verification, additional assays were obtained for three diamond holes at depth. These were included in paper logs but not transferred to drill sections. These assays (based on approximately 70 m worth of drilling) were added to the digital files. Drilling and surveying data was supplied to, or internally generated by, MOL, under the supervision of Dr Derek Fisher, and has not been independently verified. The data as supplied was internally consistent and accorded with the written descriptions prepared historically. A key issue addressed during the early development of the Spinifex Ridge Project was the veracity of the historic drill data as a basis for resource estimation and the appropriateness of combining this data with newly acquired drill data in future resource assessments.
		Drill holes occurring within the central high grade zone of the deposit (Appendix 17) The key findings are: there is some conditional bias exhibited by the historical drilling. Additionally, a relative bias exists between pressed pellet XRF and mixed acid digest, with XRF being higher at all grade ranges by an average of 8%. This bias has been identified in earlier quality assurance analysis, and it is recommended XRF be used as the primary molybdenum assay technique. In summary, the mean grades are within 10% and with due care during estimation, there are no significant reasons why the two data sets should not be used.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	ESSO holes were surveyed using high quality survey maps drafted from orthophoto base maps. MOL converted these co-ordinates to the Map Grid of Australia system (MGA), and also located and re-surveyed some of the collar positions using a differential global positioning system (DGPS) with an accuracy of +/- 10 mm in the X, Y and Z fields. MOL drill holes were sited with an accuracy of +/- 10 m using a GPS in conjunction with historical survey controlled base maps. Once drilled, the holes were then surveyed using a DGPS to an accuracy of +/- 10 mm.
		Down-hole deviation of each diamond hole drilled by Moly Mines was measured by using an Eastman camera or an electronic single shot camera every 50 m down hole (except SRD53 which has no surveys). In addition, a downhole survey contractor (Surton) surveyed all available open holes drilled by Moly Mines using an electronic multi-shot camera with a reading every 10 m. A good correlation was found between the 50 m and 10 m surveys down hole. The deep RC holes have been surveyed between 50 m and 100 m downhole but this reading can only provide a dip as the steel RC drill rods affect the camera compass. For this resource estimate the detailed Surtron surveys are used in preference to the Eastman downhole surveys but when no detailed information is available the Eastman shots are then used.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Pre-Moly drill data is at an average drill spacing of approximately 120 m centres on a local triangular grid. Moly Mines subsequently in-filled this drilling to 100 m or closer using the triangular grid, and a regular grid based on the MGA. Further 75 by 75 m infill drilling has been completed into the central portion of the resource covering an area 400 m by 500m.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drillholes are vertical. The mineralisation is roughly circular in outcrop, centered around a shallowly dipping granodiorite intrusion. Central drillholes likely intersect the mineralisation at a high angle; the outer holes in the pattern are in the lower grade parts of the mineralisation and likely intersect the mineralisation at low angles. The volume estimate is likely to be reliable but local grade estimates need to be treated with caution; this is reflected in the resource classification.
Sample security	The measures taken to ensure sample security.	Core samples are stored on site in locked containers. Recent inspection has demonstrated that the core is intact and in reasonable order.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Several orientation studies were completed by Moly Mines during the 2005 and 2006 drill programs to determine the most effective way to prepare large (> 10 kg) half core 3 m interval diamond samples and the most appropriate analytical method.
		Moly Mines twinned 3 holes previously drilled by ESSO. The results from the twinned holes have replicated the results of the previous drilling. The 3 m sample intervals from diamond core were chosen to replicate the sample length used previously by ESSO and AMAX.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Nineral isomerent and iand iand tenure status Type, reference name/number, location and ion ownership including agreements or material isource with third parties such as joint ivontures, partnership, ovoreriding royatist wilderness or national park and environmental settings. The Register do Mdy Metais Australia Physica isource and the upper setting isource acception of 1,438 Ha, and have an annual expenditure commitment for the upper offing 12 month period of 3,143,900. Mdy Metais gained formal approval for the project under the Western to obtaining a licence to operate in the area. Spinfex Ridge Mdybdenum Project that so to the obtaining a licence to operate in the area. Spinfex Ridge Mdybdenum Project was suspended in November 2008. An extension of the approval suspenditure commitment or 2 September 2013. On 30 June 2017 Mdy Metais formally project was suspended in November 2008. An extension of the approval suspenditure setting of the time of November 2008. An extension of the time mineralisation. Geology Deposit type, geological setting and style of mineralisation. Spinfex Ridge is an Achaean low-F porphrym mineralisation. Geology Deposit type, geological setting and style of mineralisation. Spinfex Ridge is an Achaean low-F porphrym mineralisation. Spinfex Ridge is an Achaean low-F porphrym mineralisation. Spinfex Ridge is and fractures hosted volumes or the southeast in deposition of ore and gangue minerals in crosscutting fractures, veinites and breecias in the outer cargace of the intrusions and in associated country rocks. These deposits originate from large volumes of the southeast in the outer cargace of the intrusions and in associated country rocks. These deposits originate from large volumes of a co	Criteria	JORC Code explanation	Commen	tary			
TerementAreaGrantExpiryCommitmentH45/164-1553.0899410/31/202010/31/2020455.400H45/1995-1509.9000110/31/202014/31/2020137.500Mineralisation.Spinifex Ridge is an Archaean low-F porphryr mineralisation.Spinifex Ridge is an Archaean low-F porphryr molybdenum deposit. These deposits are characterized by stockworks of molybdenite- bearing quartz veinlets and fractures hosted by intermediate to felic intrusive and associated country rocks. These deposits originate from large volumes of magmute, highly saline aqueous fluids under pressure. Multiple stages of brecciation related to explosive fluid pressure release from the upper parts of small intrusions result in deposition of ore and gangue minerals in crosscutting fractures, veinlets and breccias in the outer carapace of the intrusions result in deposition of ore and gangue minerals. In the southeast at about 30% is about 50% to 80% of the southeast at about 30% is about 50% mol ong and open to the southeast. The country rocks. Comprise marking, and dip to the southeast. The country rocks comprise marking, ultramafics and felic volcanics, and dip to the north at about 75%.Molybdenite mineralisation extends in a radial pattern away from the intrusion for a complex series of multiphase stockwork veins, which contain coarse molybdenium and copper sulphide grains. Mo grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenium and copper sulphide grains. Mo grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenum and copper sulphide grains. Mo grades are r	Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Project comprises three granted minit tenements, registered to Moly Metals Australia P Ltd (Moly Metals), a wholly owned subsidiary Young Australian Mines Ltd. The tenements cov a collective area of 1,438 Ha, and have an annu expenditure commitment for the upcoming 3 month period of \$143,900. Moly Metals gain formal approval for the project under the Weste Australian Environmental Protection Act 1986 on August 2008. Due to falling commodity prices t Spinifex Ridge Molybdenum Project has not be implemented, and the project was suspended November 2008. An extension of the approval w granted by the Minister for Environment on September 2013. On 30 June 2017 Moly Meta formally requested a further extension of t timeline for commencement.		ed mining ustralia Pty ibsidiary of nents cover e an annual coming 12 tals gained he Western t 1986 on 5 y prices the is not been spended in oproval was ment on 2 foly Metals ion of the		
Mes/Let-1533.0009H03/L0/200702/L0/2002035.400Mes/Loos-1374.0706415/007/00714/03/2008137.500GeologyDeposit type, geological setting and style of mineralisation.Spinifex Ridge is an Archaean low-F porphyry molybdenum deposit. These deposits or four hose of magnetic to felsic intrusive and associated country rocks. These deposits originate from large volumes of magnetic, highly saline aqueous fluids under pressure. Nutliple stages of brecciation of ore and gangue minerals in crosscutting fractures, veinlets and breccias in the outer carapace of the intrusions and in associated country rocks.The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is atypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 50 to 80 m wide, up to 200 m thick and is about 120 m below the current topographic surface. It strikes to the northwest and pluinges to the southeast at about 35°, is about 500 m long and open to the southeast. The country rocks comprise mafics, nutramafics and felsic volcanics, and dip to the north at about 75°.Molybdenite mineralization consists of a complex series of molybdenum and copper sulphide grains. Mo grades zer extricted to within 100 m. The mineralization consists of a complex series of molybdenum and copper sulphide grains. Mo grades zer extricted to within 200 m logrades are restricted to ustinkes are also formed in the wallrock.			Tenement	Area	Grant	Expiry	Commitment
MetricitiesMetricitiesMetricitiesMetricitiesGeologyDeposit type, geological setting and style of mineralisation.Spinifex Ridge is an Archaean low-F porphyry molybdenum deposit. These deposits are characterized by stockworks of molybdente- bearing quartz veinlets and fractures hosted by intermediate to felsic intrusive and associated country rocks. These deposits or flesse equiposities of magnetic financial associated country rocks. These deposits or flesses from the upper parts of small intrusions result in deposition of ore and gangue minerals in crosscutting fractures, veinlets and breccias in the outer carapace of the intrusions and in associated country rocks.The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is stypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 3bout 500 to 80 m wide, up to 200 m long and open to the southeast. The country rocks comprise marking, about 350, is about 500 molog and poen to the southeast. The country rocks comprise marking ing grades are restricted to within 100 m. The mineralization consists of a complex series of molybdenite mineralization consists of a complex series of youtheas at about 350, is about 500 molybdenite mineralization consists of a complex series molybdenite mineralization consists of a complex series molybdenite mineralization consists of a complex series molybdenite mineralized to increase with increasing vein density. Disseminated Cu subplides are also formed in the walirock.			M45/1164-I	553.0899Ha	03/10/2007	02/10/2028	\$55,400
GeologyDeposit type, geological setting and style of mineralisation.Spinifex Ridge is an Archaean low-F porphyry molybdenum deposit. These deposits are characterized by stockworks of molybdenite- bearing quartz veinlets and fractures hosted by intermediate to felsic intrusive and associated country rocks. These deposits originate from large volumes of magnatic, highly saline aqueous fluids under pressure. Multiple stages of brecciation related to explosive fluid pressure release from the upper parts of small intrusions result in deposit. or ginate from the outer carapace of the intrusions and in associated country rocks.The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is atypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 50 to 80 m wide, up to 200 m thick and is about 120 m below the current topographic surface. It strikes to the northwest and plunges to the southeast at about 35°, is about 500 m long and open to the southeast. The country rocks and felsic volcanics, and dip to the north at about 750.Molybdenite mineralisation extends in a radial pattern away from the intrusion for up to 400 m; high grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenum and copper sulphide grains. Mo grades tend to increase with increasing vein density. Disseminated Cu sulphides are also formul density. Disseminated cu sulphi			M45/1095-I	509.9063Ha	15/03/2007	14/03/2028	\$51,000
GeologyDeposit type, geological setting and style of mineralisation.Spinifex Ridge is an Archaean low-F porphyry molybdenum deposit. These deposits are characterized by stockworks of molybdenite- bearing quartz veinlets and fractures hosted by intermediate to felsic intrusive and associated country rocks. These deposits originate from large volumes of magmatic, highly saline aqueous fluids under pressure. Multiple stages of brecciation of ore and gangue minerals in crosscutting fractures, veinlets and tractures hosted to country rocks.The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is atypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 50 to 80 m wide, up to 200 m thick and is about 120 molybdenite mineralisation extends in a radial pattern away from the intrusion, and dip to the north at about 750.Molybdenite mineralisation extends in a radial pattern away from the intrusion for up to 400 m; high grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veinas, which contain carse a grade to increase with increasing vein density. Disseminated Cu sulphides are also formed in the wallrock.			M45/1096-I	374.9705Ha	15/03/2007	14/03/2028	\$37,500
The bulk of the metal content at Spinifex Ridge is located in or adjacent to a granodiorite intrusion, which is atypical in that it has a sub-horizontal rather than vertical orientation. The intrusion is 50 to 80 m wide, up to 200 m thick and is about 120 m below the current topographic surface. It strikes to the northwest and plunges to the southeast at about 35°, is about 500 m long and open to the southeast. The country rocks comprise mafics, ultramafics and felsic volcanics, and dip to the north at about 75°. Molybdenite mineralisation extends in a radial pattern away from the intrusion for up to 400 m; high grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenum and copper sulphide grains. Mo grades tend to increase with increasing vein density. Disseminated Cu sulphides are also formed in the wallrock.	Geology	Deposit type, geological setting and style of mineralisation.	Spinifex molybden characteri bearing q intermedi country ro volumes c under pri related to upper par of ore a fractures, carapace country ro	Ridge is um dep ized by uartz vein ate to fe ocks. Thes of magmat essure. M explosive ts of smal and gang veinlets of the i ocks.	an Archa osit. Th stockwork hlets and lsic intru- e deposits ic, highly lultiple st fluid pres l intrusion ue miner and bre intrusions	ean low- ese dep (s of m fractures sive and originate saline aqu ages of sure relea s result in rals in c eccias in and in	F porphyry posits are olybdenite- hosted by associated from large leous fluids brecciation se from the deposition rosscutting the outer associated
Molybdenite mineralisation extends in a radial pattern away from the intrusion for up to 400 m; high grades are restricted to within 100 m. The mineralization consists of a complex series of multiphase stockwork veins, which contain coarse molybdenum and copper sulphide grains. Mo grades tend to increase with increasing vein density. Disseminated Cu sulphides are also formed in the wallrock. The mineralised veins vary from mm to cm scale and have a preferred orientation to the northwest			The bulk located in which is rather tha to 80 m w m below t to the not about 350 southeast ultramafic north at a	of the met or adjace atypical in n vertical vide, up to he current rthwest ar p, is about to The con to and fel bout 75°.	cal conten ent to a g in that it l orientatio 200 m th topograp nd plunges t 500 m h untry roci sic volcar	t at Spinif ranodiorite has a sub n. The inte nick and is hic surfac s to the se ong and c ks compr nics, and	ex Ridge is e intrusion, p-horizontal rusion is 50 s about 120 e. It strikes outheast at open to the ise mafics, dip to the
The mineralised veins vary from mm to cm scale and have a preferred orientation to the northwest			Molybden pattern av high grad mineraliza multiphas molybden grades te density. formed in	ite miner, way from les are re ation cons e stockwo um and end to ir Dissemina the wallro	alisation the intrus stricted to sists of a rk veins, copper s ncrease w ated Cu pock.	extends i ion for up o within 1 a complex which con sulphide sulphides	n a radial to 400 m; .00 m. The series of tain coarse grains. Mo asing vein are also
			The mine and have	ralised ve a preferre	ins vary fi ed orientat	rom mm t tion to the	o cm scale northwest

Criteria	JORC Code explanation	Commentary
		and northeast at variable dips forming a conjugate set. Surface outcrop shows the veins to be tens of metres in length. The veins are typically quartz dominated with accessory potassium feldspar. Sulphides are found in vein selvages or as large irregular blebs internal to the vein. In the more distal part of the mineralization molybdenite veins may be virtually devoid of quartz. Mo and Cu grades are broadly correlated, although controlled individually to some extent by host lithology.
		Potassic alteration is preserved as potassium- feldspar veins, the replacement of plagioclase with potassium feldspar and pervasive biotite alteration at the periphery of the high grade core. Biotite alteration is especially well developed and preserved in the mafic rocks. Phyllic alteration at Spinifex Ridge is the dominant alteration assemblage and is manifested by intense to very intense sericite alteration that surrounds the silicic and potassium zones.
		The dominant ore carrying sulphide species are molybdenite (MoS_2) and chalcopyrite ($CuFeS_2$). Silver is closely related to copper possibly substituting into the matrices of tetrahedrite ($Cu_{12}Sb_4S_{13}$). Non-ore sulphides include pyrrhotite and subordinately pyrite/marcasite (FeS_2) which often form in the interstitial regions of the pillow lavas. Rare sphalerite ((Zn,Fe)S), galena (PbS), stibnite (Sb_2S_3) and native copper have also been observed. Tungsten occurs as scheelite (CaWO4) and is mainly orange in colour.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not Applicable as no exploration results included in the report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Not Applicable as no exploration results included in the report.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should	

Criteria	JORC Code explanation	Commentary
	be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Not Applicable as no exploration results included in the report.
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Not Applicable as no exploration results included in the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Not Applicable as no exploration results included in the report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not Applicable as no exploration results included in the report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	No further work is planned at this stage.

SECTION 3 ESTIMATION AND REPORTING OF MINERAL RESOURCES

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Drilling and surveying data were supplied by Moly Mines, and not been independently verified. The data as supplied was internally consistent and accorded with the written descriptions prepared historically. The Competent Person for this Mineral Resource Statement confirms there are no

Criteria	JORC Code explanation	Commentary
	·	significant reasons why the historical dataset cannot be used in this resource estimation, and that the database is suitable for Mineral Resource estimation.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken	The Competent Person visited the site to carry out a geological inspection of the property and diamond core, on 17 August 2005, 20 to 22 June 2006 and 23 February 2024.
	indicate why this is the case.	During these site visits the general site layout, access and drilling operations were observed, as well as the core and chip sample storage.
Geological Confidence in (or conversely, the uncertainty interpretation of) the geological interpretation of the mineral deposit.		All drill holes in the database were composited to 5 m downhole. The 5 m composite length was chosen to match the probable bench height of the proposed open pit mine. Assays composited were
	Nature of the data used and of any assumptions made.	Mo, Cu and Ag.
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	A set of Leapfrog shell was generated from the composites at a range of cutoffs from cut-offs from 180 ppm Mo to 1,000 ppm Mo. The composite values were smoothed according to the results of
	The use of geology in guiding and controlling Mineral Resource estimation.	a downhole variogram of the Mo values. A moderate degree of anisotropy was used to
	The factors affecting continuity both of grade and geology	elongate the shells in the assumed strike and dip directions (elongated 1.5 times striking 310° grid and 1.5 times dipping 80° to 050° grid). The range of shells was examined to choose those that seemed to best correspond to an outer, low grade shell and an inner, high grade zone. The values that were chosen for these were 180 ppm Mo and 920 ppm Mo respectively. The 180 ppm shell was selected to be below the economic cut-off. The deposit has not been closed off at lower cut-offs in any direction except to the north. The 920 ppm shell was chosen as it closely followed the size and shape of the upper part of the granodiorite intrusion
		This use of grade-controlled shells is appropriate for this style of mineralization, where the grade diminishes gradually from a high grade core outwards, without a strong known outer contact known from the current dataset. The uncertainty in the position of the outer edge of the mineralisation is reflected in the classification of blocks at the edges as Inferred.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The resource drilling has also defined the molybdenum mineralization, which is now known over an area of 800 m by 600 m to a vertical depth of approximately 450 m.
Estimation The nature and appropriateness and modelling estimation technique(s) applied an techniques assumptions, including treatment of estimations.		Grades were estimated into a block model by Ordinary kriging of downhole composites within interpreted mineralised domains.
g p a	grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen	The 5 m composite length was chosen to match the probable bench height of the proposed open pit mine.

Criteria	JORC Code explanation	Commentary
	include a description of computer software and parameters used. The availability of check estimates, previous	The block size of 50 m X by 50 m Y by 5 m Z was chosen to correspond to the densest part of the drilling grid and to be the same height as the expected bench height of the proposed open pit.
	and whether the Mineral Resource estimate takes appropriate account of such data.	The plan for the directional variograms was oriented to the assumed elongation of the mineralized body, striking 310° grid, dipping 80°
	The assumptions made regarding recovery of by-products.	to 050° grid and plunging 30° to the north.
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	The parameters used were based on the results of the Mo neighbourhood analysis, but they were also adopted for the other two estimated elements of copper and silver.
	In the case of block model interpolation, the block size in relation to the average sample	The discretisation scheme was chosen to represent 5 m spacing in all three directions.
	spacing and the search employed.	After the initial Kriging runs, a small number of blocks in the Low Grade zone did not receive a Mo,
	selective mining units.	Cu or Ag value. These were assigned values of 200 ppm Mo, 300 ppm Cu and 1.0 g/t Ag.
	Any assumptions about correlation between variables.	The weathered densities were assigned from a very limited number of downhole density
	Description of how the geological interpretation was used to control the resource estimates.	measurements and should be considered preliminary only. However as there is no Oxide or Transition ore this has no impact on the Mineral Resource.
	Discussion of basis for using or not using grade cutting or capping.	To validate the block model estimate, basic visual
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available	checks were carried out. All blocks with a proportion of either High Grade or Low Grade were inspected to ensure they had values for all of the estimated metals. The volumes estimated for the input wireframes were compared to the sum of the block proportions. For both the High Grade and Low Grade zones the two figures were within 2% of each other.
		The average grades of the estimates were compared to the average grades of the input composites. In each case the difference was within an acceptable limit.
		In addition, the input data was compared against the Measured plus Indicated block estimates for each metal in the Low Grade Zone in 100 m X and 100 m Y slices. These show that the grade trends in the input composites are reasonably matched by the estimate given the expected level of smoothing in the kriging estimation.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	From the optimisation parameters, a Net Smelter Return (NSR) value was created for each block, with the formula:
		NSR=Mo*0.054895*0.8257+Cu*0.0125*0.605.
		On the Mo grade alone (assuming Cu is 0), the processing transport total of \$18.67/t is the equivalent to 412ppm Mo.

Criteria	JORC Code explanation	Commentary
		The resource reported is constrained by the Revenue Factor 1.5 open pit, and at a cutoff of 350 ppm Mo equivalent (NSR\$15.86/t).
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Due to the massive and homogenous nature of the orebody, major equipment selected for the mining operations include 600 t class excavating shovels matched to 220 t rigid dump trucks. Mining will take place using 10 m high benches, and the majority of all material requires drill and blasting. Dilution and mining recovery were included in the geological block model by regularizing the blocks to 50m x 50m x 10m. Given the bulk nature of the mineralization, blocks with 100% ore internal to the envelopes were not diluted or downgraded using ore loss factors. Dilution and Ore loss is expected at the top of the mineralized envelope, within the transitional zone between oxidized and fresh rock. Pit optimization was completed using Whittle software. Assumptions included overall pit slope angles of 43°, operating and capital costs estimates based on agreed contractual positions or vendor data, process design feasibility studies, independent studies and economic parameters.
		To assess reasonable prospects for eventual economic extraction (RPEEE), a pit optimisation process was performed using the GEOVIA Whittle [™] software. Pit optimisation input parameters were extracted from the previous studies or from ERM's database, these parameters include:
		Overall pit slope angles

- Mining cost, benchmarked by ERM
- Potential ore handling and processing costs, benchmarked by ERM
- Processing recoveries
- Product revenues
- Selling costs
- Royalties.

Item	Unit	Value
Metal Price for Mo	AU\$/t	54,895
		(16.6USD/lb)
Metal Price for Cu	AU\$/t	12,500
		(3.75USD/lb)
Mining Recovery/Dilution	%	From reblocking
		model to 25x25x10
Mo Recovery	%	84.0
Cu Recovery	%	64.0
Mo Product Losses	%	1.25 processing loss
Cu Product Losses	%	3.50 processing loss
Processing cost (processing, labour,	AUD/t ore	16.45
smelting and G&A)		
Mining cost of material mined	AUD/t mined	4
Overall Slope Angle (OSA)	degree	43
Government royalty - Mo	%	5.0

The Basis of Design (BoD) containing the optimisation input parameters is presented below.

Criteria JORC Code explanation

Commentary

Government royalty - Cu	%	5.0
Other Royalties (Native Title)	%	1.0
Kallenia Mines Royalty	A\$/t	0.02
Model		spinifex_ridge_june 2008.mdl
Resource Category		Measured, Indicated & Inferred

Metallurgical factors or assumptions The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of prospects determining reasonable for eventual economic extraction to consider potential metallurgical methods, but the regarding assumptions metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.

Six PQ diamond core holes were drilled across the deposit to produce approximately 20 t of PQ drill core for bench scale test work and process plant piloting. Other samples from resource drill holes were used to provide samples for preliminary work and variability testing. Seven bulk samples were prepared from the six PQ diamond core samples to represent the three main rock types at varying grades for comminution and flotation piloting. Metallurgical test work included the following:

- Standard comminution testing on three representative lithology composites, including Unconfined Compressive Strength, Abrasion Index, Bond Ball Mill Work Index and Bond Rod Mill Work Index.
- Semi-Autogenous (SAG) milling amenability testing on a sample of full drill core including Advanced Media Competency Testing, Crushing Work Index on feed and media competency survivors, JK Drop Weight Tests, Standard Rod and Ball Work Indices and Abrasion Index.
- High Pressure Grinding Roll ("HPGR") amenability testing on a representative bulk composite sample.
- Mineralogy of feed and concentrates using Optical, X-ray Diffraction and QEM-SCAN techniques.
- Preliminary rougher flotation test work, including reagent evaluation and grind size optimization, conducted on representative samples from each of the three lithological composites.
- Differential flotation and cleaning test work on an estimated Life of Mine (LOM) composite with the objective of producing a high molybdenum grade, low copper grade molybdenite concentrate that will meet market requirements.

The results from the metallurgical test work have shown:

- The Spinifex Ridge ore is generally hard, abrasive and competent. The Bond Ball Mill Work Indices range from 20 to 26 kWh/t.
- SAG mill testing indicates that the competent nature of the ore requires two or three stage crushing rather than a simple primary crushing and SAG mill circuit. HPGR testing has shown that the ore is amenable to the high pressure grinding roll technique.
- Mineralogical examinations show that the ore mineralogy is not complex. Nearly all

Criteria	JORC Code explanation	
----------	-----------------------	--

Commentary

the molybdenite is in easily liberated coarse grains. The amount of interlocking minerals is generally low. Copper mineralization is nearly all in chalcopyrite with rare tetrahedrite.

 Rougher flotation and grind size optimization test work indicate that a coarse grind of 80% passing 280 µm can be used in the roughing stage with little loss of metal recovery. Overall roughing recovery for molybdenum is in excess of 90%.

Bulk ore samples were processed in a continuous processing pilot plant. Approximately 20 t of ore were treated. Two blends of crushed core samples totalling approximately 15 tonnes were then processed. The recovery of Mo in the Cu-Mo bulk roughing/scavenging flotation was satisfactory at approximately 89%-92% for the two blends, bench scale testing. The confirmina Mo concentrate grade for one blend was over 50% Mo for periods of stable operation and for the other blend approximately 40% Mo. The copper circuit was piloted separately to molybdenum and involved one stage of roughing and two stages of cleaning at an elevated pH of 11.5. Survey samples were taken at the optimum float conditions. The copper recovery at the optimum fine grind was satisfactory at 79% of copper in feed to the circuit. The measured Cu concentrate grade for the period of optimum operation was 25.1% Cu.

Mo concentrates require very low impurity levels within the concentrates to provide global access to the down-stream processors. For Spinifex Ridge concentrates, the most important impurities and their maximum allowable levels are copper (0.4%), lead (0.04%) and arsenic (0.02%). Ferric chloride leaching process is the only commercially proven process for the selective removal of copper present as chalcopyrite. A ferric chloride leaching test work program was carried out by Idesol in Chile in conjunction with field visits to operational plants at Los Pelambres and Nos in Chile. Copper and arsenic levels can be readily reduced to acceptable levels using the ferric leaching process.

Environmental factors or assumptions

Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determinina reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.

Tailings will be produced by crushing and milling the ore before processing the resultant slurry through a flotation plant to extract the molybdenite and chalcopyrite. The grind of the ore will be relatively coarse, and tailings will be filtered and transported via conveyors to a dry stacker for final deposition, forming a series of half circle interlocking stacks each with a radius of 600 m. The site selected for the construction of the tailings stack is located to the north of the main ridge which defines the northern side of the orebody.

The geochemical properties of the various waste units were investigated in a preliminary selection of samples (11) followed by a more comprehensive second sampling (32) and analysis. Samples were

Criteria	JORC Code explanation	Commentary		
		analysed for pH a acid generation, mineralogy, and Maximum potentia potential were cal	and EC, total-S and acid neutralization total element co al acidity and net ac culated.	I SO₄-S, net- on capacity, ncentrations. id production
		Felsics and mafic as non-acid-formi with low enrichme elements. Felsic a were typically I measured as pote regolith and be considered unlikel quality or vegetati classified as NAF sample, and conta of Ag, Cu, Bi, Sb, test work, a cons is to be used to d waste bedrock. As a total of 37 mill would require landforms.	regolith samples w ng (NAF), alkaline, nt of environmental nd mafic bedrock w NAF, but with t ntially-acid-forming edrock waste sa y to pose any conce on. Low-grade ore s with the exception ined some low leve Se, and Mo. As a ervative total-S val istinguish between s a result, it was es ion cubic metres of encapsulation w	ere classified low EC, and ly-significant aste samples wo samples g (PAF). Both mples were erns for water samples were n of one PAF el enrichment result of the lue of 0.32% NAF and PAF stimated that of PAF waste ithin waste
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	d. If The Spinifex Ridge database contains 1, ons. If density determinations. They have been er wet from 29 drill holes and are distributed ac ments, mineralised zone and represent all lithologies. The procedure is based Archimedes immersion method, whereby of weight of an object when suspended i of known density is equal to the mass displaced, from which its volume and density can be calculated. The testw carried out by both Moly Mines and by party analytical laboratory. The we densities were assigned from a very number of downhole density measurem the mineralization is entirely in the Fresh,		s 1,552 bulk been derived ed across the all major sed on the reby the loss ded in a fluid nass of fluid and hence estwork was l by a third- weathered very limited irements. As resh, this has
		Rock Type	Weathering	Density
		Mafic	Fresh	2.9
			Transition	2.7
			Oxide	2.4
		Ultramafic	Fresh	2.9
			Transition	2.7
		Folcio	Uxide	2.4
		reisic	Transition	2./
			Oxide	2.2
		Granodiorite	Fresh	2.7
			Transition	2.5
			Oxide	2.2
		BIF	All	3.4

Criteria	JORC Code explanation	Commentary
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	Blocks in the model have been classified based largely on the slope of regression of the Mo kriged estimate. If the Low Grade estimate of a block had a slope of regression of at least 0.85, it was classified Measured; blocks estimated with fewer than 32 composites were classified as Inferred; all remaining blocks in the Low Grade Zone were classified Indicated. The Low Grade Zone were classified Indicated. The Low Grade Zone Measured blocks correspond with the central area of the resource that has been drilled on a 75 m by 75 m grid. All blocks in the High Grade Zone (the balance being in the Low Grade Zone) were classified as Measured, although the slopes of regression of the High Grade Zone estimate are relatively low. The global mean grade in this zone is considered reliable due to the large number of composites (578) and the low coefficient of variation (0.6). The estimate is not suitable for a selective mining scenario, although this is extremely unlikely to be required due to its high grade. After classifying according to these criteria, isolated groups of Measured were downgraded to Indicated after visual inspection, and some isolated blocks of Indicated near the top of the fresh but directly above the Measured were upgraded to Measured. This has affected no more than twenty blocks in each case, and is not considered a material change in the classification procedures. All blocks below 700 m RL (approximately 400 m below the natural surface) were classified Inferred, as the drilling data is very sparse at these levels. Any blocks captured by the wireframes below the 550 m RL are not included in the resource classification.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	To validate the block model estimate, basic visual checks were carried out. All mineralised blocks were inspected to ensure they had values for all the estimated metals. The volumes estimated for the input wireframes were compared to the sum of the block proportions. For both the High Grade and Low Grade zones the two figures were within 2% of each other. The average grades of the estimates were compared to the average grades of the input composites. In each case the difference was within an acceptable limit. In addition, the input data was compared against the Measured plus Indicated block estimates for each metal in the Low Grade Zone in 100 m X and 100 m Y slices. These show that the grade trends in the input composites are reasonably matched by the estimate given the expected level of smoothing in the kriging estimation
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy	The accuracy of the Mineral Resource is communicated through the classification assigned. The Mineral Resource been classified in accordance with the JORC Code (2012 Edition) using a qualitative approach. All factors that have been

Criteria	JORC Code explanation	Commentary
Criteria	of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	Commentary considered have been adequately communicated in Section 1 and Section 3 of this table. The Mineral Resource Statement relates to a global estimate of in-situ tonnes and grade. It is suitable for reporting as a resource, however the relatively wide sampling grid has produced a model with only moderately well estimated individual blocks. No reliance should be placed on individual block grade estimates.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

APPENDIX B DRILLHOLE DATABASE

SECTION 1 COLLARS

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
CGD001	DDH	Anglo American	199299.3	7687690.6	1166	185.2
CGD003	DDH	Anglo American	199809.8	7687920.6	1154	267
CGD006	DDH	Anglo American	198789.921	7687506.998	1174	330
CGD007	DDH	Anglo American	198933.688	7687513.501	1161	320
CGD028	DDH	AMAX	198579.65	7687706.758	1184	300
CGD029	DDH	AMAX	198995.65	7686318.758	1180	200
CGD030	DDH	AMAX	198905.65	7686753.758	1185	246.2
CGD031	DDH	AMAX	198598.65	7687199.758	1167	250
CGPD5	RC	Anglo American	198550	7687489.1	1176	33.53
CGPDDD1	DDH	Anglo American	198511	7687469.2	1182	105.5
GTD001	RCD	MOL	198681.37	7687517.43	1181.2	219.8
GTD002	DDH	MOL	199054.34	7687464.72	1161.79	116
GTD003	RCD	MOL	198945.63	7687461.68	1166.53	256.9
GTD004	RCD	MOL	198913.5	7687356.69	1165.76	170
GTD005	RCD	MOL	198998.66	7687351.58	1164.76	140
GTD006	RCD	MOL	198698.62	7687301.27	1167.99	279.8
GTD007	DDH	MOL	198576.41	7687300.55	1171.59	120
GTD008	RCD	MOL	198691.5	7687491.68	1177.35	275
GTD009	DDH	MOL	198513.37	7687480.41	1180.71	251.4
GTD010	RCD	MOL	198921.28	7687349.87	1165.54	230
GTD011	DDH	MOL	198923.13	7687235.39	1164.64	103
GTD012	RCD	MOL	198734.25	7687350.62	1172	250.1
GTD013	DDH	MOL	198735.65	7687184.49	1172.29	245.7
GTD014	RCD	MOL	198818.46	7687562.85	1179.15	215
GTD015	DDH	MOL	198961.11	7687654.2	1160.98	150
GTD016	RCD	MOL	198601.76	7687189.89	1172.87	192
GTD017	RCD	MOL	198964.22	7687095.16	1164.36	209.8
GTD018	RCD	MOL	198962.52	7687242.47	1164.05	306.8
GTD019	DDH	MOL	199248.07	7687349.69	1167.153	120.2
GTD020	DDH	MOL	198355.14	7687987.41	1310.215	190
GTD021	DDH	MOL	198353.24	7687990.39	1310.512	110.3
GTD022	RCD	MOL	198498.88	7687430.16	1182.89	252
GTD023	RCD	MOL	199335.91	7687274.8	1173.95	220.5
GTD024	RCD	MOL	198419.45	7687295.54	1182.57	224.4
GTD025A	DDH	MOL	198003.37	7687554.95	1205.298	50.11
GTD026	DDH	MOL	198013	7687562	1208	50.4

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
GTD027	DDH	MOL	197997.95	7687642.22	1249.721	120.6
GTD028	DDH	MOL	198016.03	7687648.35	1249	131.6
GTD029	DDH	MOL	198026.97	7687825.12	1308.6	168.5
GTD030	DDH	MOL	198025.5	7687807.87	1308.364	44.9
GTD030A	RCD	MOL	198025.99	7687813.81	1308.68	168.5
GTD031	RCD	MOL	198026.9	7687959.5	1307.636	146.6
GTD032	RCD	MOL	198028.18	7687968.5	1307.461	150.5
GTD033	RCD	MOL	198032.93	7688152.59	1307.964	165
GTD034	RCD	MOL	198032.38	7688163.77	1307.523	170
GTD035	DDH	MOL	198065.87	7688380.92	1193.345	40.5
GTD036	DDH	MOL	198065.87	7688380.42	1193.35	30
GTD037	DDH	MOL	198065.87	7688380.92	1193.345	46
GTD038	DDH	MOL	198046.92	7688395.8	1185.29	24
GTD039	DDH	MOL	197574.01	7689399.9	1153.554	15.3
GTD040	DDH	MOL	197725.91	7689400.66	1151.6	15
GTD041	DDH	MOL	197874.02	7689399.14	1151.901	15.8
GTD042	DDH	MOL	197420.96	7689247.92	1154.757	15.1
GTD043	DDH	MOL	197573.8	7689251.04	1154.168	15.4
GTD044	DDH	MOL	197725.27	7689248.99	1152.603	15.4
GTD045	DDH	MOL	197875.51	7689251.3	1153.281	15.1
GTD046	DDH	MOL	198024.56	7689252.12	1155.097	15
GTD047	DDH	MOL	197427.41	7689100.38	1157.405	13.8
GTD048	DDH	MOL	197574.01	7689100.89	1154.549	15
GTD049	DDH	MOL	197725.48	7689098.88	1154.794	30.7
GTD049	DDH	MOL	197725.48	7689098.88	1154.794	30.7
GTD050	DDH	MOL	197876.81	7689099.32	1155.101	15
GTD051	DDH	MOL	198019.11	7689102.63	1157.224	15
GTD052	DDH	MOL	197577.04	7688954.42	1156.349	15
GTD053	DDH	MOL	197720.88	7688981.08	1156.628	30
GTD054	DDH	MOL	197874.24	7688952.37	1157.615	15
GTD055	DDH	MOL	197574.46	7688801.78	1160.837	15
GTD056	DDH	MOL	197726.82	7688800.83	1159.753	15
GTD057	DDH	MOL	198063.12	7688780.44	1163.233	15
GTD058	DDH	MOL	197574.03	7688655.26	1161.439	15
GTD059	DDH	MOL	197719.39	7688653.32	1162.197	15
GTD060	DDH	MOL	197933.55	7688587.21	1165.219	15
GTD061	DDH	MOL	198069.4	7688582.31	1171.093	15
GTD062	DDH	MOL	198441.239	7687729.836	1206.85	249.5
GTD063	DDH	MOL	197997.03	7687461.91	1190.761	60

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
GTD064	DDH	MOL	197793.08	7687336.39	1174.869	30.19
GTD065	DDH	MOL	197843.9	7687339.53	1178.192	31.6
GTD066	RCD	MOL	198355.67	7687700.18	1184.398	171.5
GTD067	RCD	MOL	198645.97	7687800.75	1180.761	210.5
GTD068	RC	MOL	198551.04	7687913.87	1222.981	60
GTD069	DDH	MOL	197992.86	7687422.94	1190.693	50
GTD070	DDH	MOL	198063.95	7687195.19	1180.472	50
GTD071	DDH	MOL	197990.49	7687506.97	1185.939	60.5
GTD072	DDH	MOL	197975.03	7687488.91	1186.202	60.5
GTD073	DDH	MOL	197986.62	7687382.47	1185.715	42.6
MMDG16	RC	MOL	193441.42	7709998.96	1093	54
MMDG17	RC	MOL	195275.46	7709464.66	1095.9	62
NGD001	DDH	Esso	198796.765	7687520.004	1174	512.4
NGD002	DDH	Esso	198698.247	7687314.59	1167	450
NGD003	DDH	Esso	198580.27	7687491.736	1168	400
NGD004	DDH	Esso	198964.047	7687313.468	1167	226
NGD005	DDH	Esso	198983.882	7687544.083	1160	554
NGD006	DDH	Esso	198727.358	7687724.135	1173	429
NGD007	DDH	Esso	199294.504	7687518.27	1208	472.5
NGD008	DDH	Esso	198919.684	7687734.754	1160	540
NGD009	DDH	Esso	198741.181	7687621.486	1203	485
NGD010	DDH	Esso	199169.074	7687735.034	1163	410.6
NGD011	DDH	Esso	198482.161	7687628.117	1173	400.5
NGD012	DDH	Esso	198982.427	7687842.231	1162	508
NGD013	DDH	Esso	198857.024	7687410.508	1162	525
NGD014	DDH	Esso	198661.956	7687511.162	1182	452
NGD015	DDH	Esso	198571.023	7687303.433	1168	351
NGD016	DDH	Esso	198357.449	7687410.836	1182	439.4
NGD017	DDH	Esso	198607.387	7687410.357	1174	416
NGD018	DDH	Esso	199169.414	7687518.762	1218	475
NGD019	DDH	Esso	198732.355	7687410.055	1167	450
NGD020	DDH	Esso	198919.44	7687302.912	1168	450.2
NGD021	DDH	Esso	198856.872	7687626.839	1187	450
NGD022	DDH	Esso	198614.398	7687603.135	1202	457.5
NGD023	DDH	Esso	198981.878	7687410.833	1161	425
NGD024	DDH	Esso	198669.556	7687096.06	1167	378
NGD025	DDH	Esso	199107.07	7687409.027	1160	721.5
NGD026	DDH	Esso	198860.871	7687202.05	1160	480
NGD027	DDH	Esso	198419.898	7687519.444	1193	393.4

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC001	RC	MOL	197753.933	7687438.445	1185.587	50
SRC002	RC	MOL	197770.202	7687315.065	1174.669	50
SRC003	RC	MOL	197762.862	7687202.122	1176.635	50
SRC004	RC	MOL	197730.288	7687093.426	1193.697	50
SRC006	RC	MOL	197401.135	7687310.066	1183.422	50
SRC007	RC	MOL	197392.253	7687198.915	1175.722	50
SRC008	RC	MOL	197390.201	7687082.298	1188.17	50
SRC010	RC	MOL	197043.123	7687423.938	1204.019	48
SRC011	RC	MOL	197043.452	7687332.755	1188.598	50
SRC012	RC	MOL	197038.184	7687201.825	1181.206	50
SRC013	RC	MOL	197024.995	7687082.652	1190.181	50
SRC015	RC	MOL	196676.435	7687430.84	1198.621	50
SRC016	RC	MOL	196682.1	7687310.636	1193.073	50
SRC017	RC	MOL	196670.721	7687195.99	1188.027	50
SRC018	RC	MOL	196678.826	7687073.873	1200.813	50
SRC019	RC	MOL	196675.915	7686972.93	1204.018	50
SRC020	RC	MOL	196330.451	7687441.087	1205.868	50
SRC021	RC	MOL	196315.352	7687322.642	1195.803	50
SRC022	RC	MOL	196322.316	7687208.877	1190.801	50
SRC023	RC	MOL	196323.46	7687084.077	1194.401	50
SRC024	RC	MOL	196326.526	7686965.53	1202.163	50
SRC026	RC	MOL	195953.732	7687432.123	1191.537	50
SRC027	RC	MOL	195955.592	7687329.886	1187.729	50
SRC028	RC	MOL	195950.467	7687193.691	1189.371	50
SRC029	RC	MOL	195958.1	7687070.398	1206.999	50
SRC030	RC	MOL	195959.828	7686982.246	1229.794	50
SRC032	RC	MOL	195616.669	7687436.474	1201.518	50
SRC033	RC	MOL	195610.688	7687325.487	1184.932	50
SRC034	RC	MOL	195596.911	7687205.109	1186.177	50
SRC035	RC	MOL	195601.692	7687086.949	1194.886	50
SRC037	RC	MOL	199446.495	7687304.649	1181.18	50
SRC038	RC	MOL	199561.483	7687332.574	1167.983	50
SRC039	RC	MOL	199676.038	7687307.954	1163.5	50
SRC040	RC	MOL	199797.772	7687328.405	1161.658	50
SRC041	RC	MOL	199431.168	7687204.883	1174.95	50
SRC042	RC	MOL	199550.622	7687195.236	1176.6	50
SRC043	RC	MOL	199678.619	7687191.804	1170.145	50
SRC044	RC	MOL	199430.117	7687083.985	1173.606	50
SRC045	RC	MOL	199555.668	7687078.783	1167.66	50

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC046	RC	MOL	199428.836	7686962.125	1176.239	50
SRC047	RC	MOL	199558.386	7686948.524	1171.276	50
SRC048	RC	MOL	199449.144	7686840.597	1177.853	50
SRC049	RC	MOL	199562.111	7686832.357	1168.666	50
SRC050	RC	MOL	199431.447	7686732.832	1182.606	50
SRC051	RC	MOL	199198.889	7686604.261	1173.051	50
SRC052	RC	MOL	199196.706	7687188.159	1166.183	50
SRC053	RC	MOL	199318.302	7687186.651	1168.278	50
SRC054	RC	MOL	198966.327	7687093.467	1164.481	50
SRC055	RC	MOL	199074.838	7687075.682	1166.716	50
SRC056	RC	MOL	199192.988	7687077.405	1170.854	50
SRC057	RC	MOL	199310.819	7687082.189	1167.868	50
SRC058	RC	MOL	198835.68	7686953.006	1182.321	50
SRC059	RC	MOL	198963.128	7686968.398	1175.692	50
SRC060	RC	MOL	199093.105	7686973.486	1164.705	50
SRC061	RC	MOL	199195.333	7686960.315	1172.273	50
SRC062	RC	MOL	199328.248	7686963.503	1175.143	50
SRC063	RC	MOL	198839.956	7686832.971	1184.734	50
SRC064	RC	MOL	198956.196	7686839.651	1174.516	50
SRC065	RC	MOL	199084.964	7686843.922	1169.677	50
SRC066	RC	MOL	199208.888	7686840.792	1166.43	50
SRC067	RC	MOL	199315.762	7686850.854	1174.464	50
SRC068	RC	MOL	198840.714	7686723.882	1201.477	50
SRC069	RC	MOL	198963.599	7686717.464	1175.396	50
SRC070	RC	MOL	199084.163	7686712.108	1173.707	50
SRC071	RC	MOL	199203.412	7686717.69	1169.85	50
SRC072	RC	MOL	199313.754	7686729.914	1170.865	50
SRC073	RC	MOL	198840.347	7686597.356	1178.89	50
SRC074	RC	MOL	198965.014	7686596.378	1174.85	50
SRC075	RC	MOL	199069.593	7686594.638	1174.681	50
SRC076	RC	MOL	199294.866	7686605.88	1183.03	50
SRC077	RC	MOL	197272.965	7686703.423	1203.59	50
SRC078	RC	MOL	197402.18	7686712.649	1196.167	50
SRC079	RC	MOL	197513.509	7686711.012	1185.765	50
SRC080	RC	MOL	197287.347	7686602.249	1186.614	50
SRC081	RC	MOL	197390.736	7686610.987	1187.716	50
SRC082	RC	MOL	197523.474	7686614.33	1182.145	50
SRC083	RC	MOL	197640.427	7686603.209	1180.044	50
SRC085	RC	MOL	197515.09	7686472.92	1183.248	50

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC086	RC	MOL	197650.423	7686487.845	1178.362	50
SRC087	RC	MOL	197757.842	7686485.443	1182.966	50
SRC088	RC	MOL	197872.021	7686479.756	1177.593	50
SRC089	RC	MOL	197521.87	7686353.82	1178.813	50
SRC090	RC	MOL	197633.006	7686370.929	1189.052	50
SRC091	RC	MOL	197761.983	7686360.168	1182.698	50
SRC092	RC	MOL	197887.629	7686371.639	1177.205	50
SRC093	RC	MOL	198799.77	7687409.09	1168.44	250
SRC094	RC	MOL	198822.19	7687358.38	1165.92	250
SRC095	RC	MOL	198792.7	7687347.89	1167.86	252
SRC096	RC	MOL	198749.6	7687346.2	1171.03	252
SRC097	RC	MOL	198752.69	7687305.19	1169.05	250
SRC098	RC	MOL	198758.85	7687254.36	1168.8	250
SRC099	RC	MOL	198811.09	7687254.94	1165.52	250
SRC100	RC	MOL	198851.27	7687252.43	1165.47	250
SRC101	RC	MOL	198701.76	7687352.67	1171	250
SRC102	RC	MOL	198704.36	7687244.69	1172.24	250
SRC103	RC	MOL	198644.26	7687250.72	1167.98	250
SRC104	RC	MOL	198653.16	7687300.09	1169.96	250
SRC105	RC	MOL	198657.09	7687349.48	1170.8	250
SRC106	RC	MOL	198647.1	7687400.07	1175.38	250
SRC107	RC	MOL	198636.15	7687451.99	1168.39	250
SRC108	RC	MOL	198702.35	7687445.12	1167.56	250
SRC109	RC	MOL	198741.56	7687441.92	1167.32	250
SRC110	RC	MOL	198784.82	7687443.32	1168.32	250
SRC111	RC	MOL	198834.85	7687451.75	1167.3	250
SRC112	RC	MOL	199174.72	7687134.2	1165.83	300
SRC113	RC	MOL	198647.97	7687202.13	1169.55	300
SRC114	RC	MOL	199172.35	7687203.81	1170.48	300
SRC115	RC	MOL	199246.39	7687199	1169.82	300
SRC116	RC	MOL	198952.64	7687280.38	1168.78	300
SRC117	RC	MOL	199023.88	7687277.46	1162.67	250
SRC118	RC	MOL	199172.37	7687277.27	1170.54	300
SRC119	RC	MOL	199248.96	7687276.11	1173.5	300
SRC120	RC	MOL	198572.35	7687348.58	1171.71	300
SRC121	RC	MOL	198874.98	7687349.83	1167.12	300
SRC122	RC	MOL	198951.42	7687352.43	1167.15	300
SRC123	RC	MOL	198569.9	7687422.72	1181.65	300
SRC124	RC	MOL	198800.91	7687500.62	1176.47	300

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC125	RC	MOL	198850.88	7687577.6	1180.53	297
SRC126	RC	MOL	198798.91	7687576.98	1182.78	300
SRC128	RC	MOL	198730.54	7687573.55	1191.25	300
SRC129	RC	MOL	198650.89	7687570.96	1200.15	300
SRC130	RC	MOL	198955.73	7687497.11	1161.47	102
SRC131	RC	MOL	199025.35	7687354.2	1164.84	300
SRC132	RC	MOL	199175.96	7687350.83	1167.13	300
SRC133	RC	MOL	198575.28	7687574.59	1184.56	300
SRC135	RC	MOL	198945.08	7687463.35	1166.44	300
SRC136	RC	MOL	199023.33	7687495.93	1161.63	300
SRC137	RC	MOL	199174.05	7687428	1185.97	246
SRC138	RC	MOL	199107.54	7687347.77	1162.06	250
SRC139	RC	MOL	199100.63	7687278.82	1162.38	250
SRC140	RC	MOL	198918.68	7686974.53	1176.01	210
SRC141	RC	MOL	199115.7	7687075.04	1163.92	198
SRC143	RC	MOL	198414.93	7687658.62	1176.21	198
SRC144	RC	MOL	197829.66	7686987.29	1194.085	50
SRC145	RC	MOL	198000.65	7686996.09	1186.916	50
SRC146	RC	MOL	197804.15	7686799.93	1182.202	50
SRC147	RC	MOL	198003.39	7686799.58	1180.885	50
SRC148	RC	MOL	197798.89	7686597.72	1177.514	50
SRC150	RC	MOL	197198.02	7686400.53	1188.119	50
SRC151	RC	MOL	197003.1	7686398.84	1192.492	50
SRC152	RC	MOL	196997.92	7686599.56	1201.284	50
SRC153	RC	MOL	196996.69	7686208.8	1193.196	50
SRC154	RC	MOL	198797.92	7685599.79	1177.41	50
SRC155	RC	MOL	198998.02	7685604.32	1176.305	50
SRC156	RC	MOL	199199.2	7685593.23	1176.183	50
SRC157	RC	MOL	199399.33	7685599.78	1178.584	50
SRC158	RC	MOL	199610.34	7685600.41	1182.2	50
SRC159	RC	MOL	199812.32	7685599.9	1184.264	50
SRC160	RC	MOL	199994.22	7685613.31	1186.999	50
SRC161	RC	MOL	200000.6	7685797.44	1187.569	50
SRC162	RC	MOL	199793.68	7685800.76	1183.569	50
SRC163	RC	MOL	199603.43	7685797.59	1182.08	50
SRC164	RC	MOL	199401.04	7685793.33	1178.414	50
SRC165	RC	MOL	199200.97	7685798.65	1175.326	50
SRC166	RC	MOL	199003.23	7685801.75	1173.407	50
SRC167	RC	MOL	198793.97	7685805.71	1173.517	50

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC168	RC	MOL	198809.63	7685991.47	1172.833	50
SRC169	RC	MOL	199002.75	7685992.21	1176.92	50
SRC170	RC	MOL	199216.25	7686007.19	1178.641	50
SRC171	RC	MOL	199397.77	7685999.62	1179.752	50
SRC172	RC	MOL	199602.68	7686005.52	1180.639	50
SRC173	RC	MOL	199800.57	7686002.67	1186.133	50
SRC174	RC	MOL	200011.66	7685992.93	1194.72	50
SRC175	RC	MOL	199999.91	7686188.5	1183.466	50
SRC176	RC	MOL	199787.12	7686196.19	1198.063	50
SRC177	RC	MOL	199591.69	7686194.22	1183.68	50
SRC178	RC	MOL	199400.27	7686196.54	1178.542	50
SRC179	RC	MOL	199200.35	7686207.94	1179.733	50
SRC180	RC	MOL	198993.46	7686207.88	1183.462	50
SRC181	RC	MOL	198795.27	7686200.97	1174.091	50
SRC182	RC	MOL	199189.97	7686405.06	1180.202	50
SRC183	RC	MOL	199404.73	7686408.64	1177.785	50
SRC184	RC	MOL	199607.9	7686432.49	1202.431	50
SRC185	RC	MOL	199604.53	7686602.98	1176.082	50
SRC186	RC	MOL	199797.62	7686603.85	1177.819	50
SRC187	RC	MOL	199812.28	7686393.73	1193.33	50
SRC188	RC	MOL	200020.41	7686397.99	1189.589	50
SRC189	RC	MOL	199981.75	7686595.06	1195.832	50
SRC190	RC	MOL	200003.89	7686814.42	1174.087	50
SRC191	RC	MOL	199805.6	7686808.18	1182.907	50
SRC192	RC	MOL	199996.47	7686998.69	1179.355	50
SRC193	RC	MOL	199790.45	7687006.73	1171.595	50
SRC194	RC	MOL	200000.07	7687197.01	1164.604	50
SRC195	RC	MOL	197204.61	7686202.8	1183.79	50
SRC196	RC	MOL	197399.45	7686198.79	1181.889	50
SRC197	RC	MOL	197598.44	7686195.99	1185.33	50
SRC198	RC	MOL	197796.48	7686201.85	1185.096	50
SRC199	RC	MOL	197404.32	7685999.36	1182.102	50
SRC200	RC	MOL	197596.47	7686002.22	1185.764	50
SRC201	RC	MOL	197803.23	7685998.81	1183.34	50
SRC202	RC	MOL	197993.77	7685998.74	1176.977	50
SRC203	RC	MOL	198013.72	7686199.47	1180.286	50
SRC204	RC	MOL	198201.01	7686406.16	1178.581	50
SRC205	RC	MOL	199084.79	7686973.02	1164.85	185
SRC206	RC	MOL	198957.28	7686967.85	1175.784	186

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRC207	RC	MOL	198831.01	7686954.33	1182.209	186
SRC208	RC	MOL	198841.61	7686833.85	1184.608	132
SRC209	RC	MOL	198956.62	7686842.3	1174.366	186
SRC210	RC	MOL	198783.08	7687125.5	1164.919	186
SRCD084	RC	MOL	197406.216	7686476.124	1190.097	363.3
SRCD127	RC	MOL	198729.95	7687496.48	1170.98	626.8
SRCD134	RC	MOL	198712.25	7687652.77	1197.01	501.3
SRCD142	RC	MOL	198648.69	7687755.54	1175.33	508.1
SRCD149	RC	MOL	198003.39	7686599.28	1175.746	306.1
SRD050	RCD	MOL	198744.631	7687405.152	1170.4	453.6
SRD051	RCD	MOL	198787.186	7687298.086	1169.17	450.2
SRD052	RCD	MOL	198606.116	7687404.114	1176	446.9
SRD053	RCD	MOL	198799.043	7687408.617	1168.7	723.2
SRD054	RCD	MOL	198606.983	7687191.587	1172.5	60
SRD055	RCD	MOL	198731.709	7687194.433	1173	403.6
SRD056	RCD	MOL	198986.119	7687190.963	1163	474.5
SRD057	RCD	MOL	199109.466	7687189.595	1163.7	48
SRD057a	RCD	MOL	199111.364	7687184.146	1163.709	443.6
SRD058	RCD	MOL	198855.124	7687299.564	1168.5	445.2
SRD059	RCD	MOL	198416.9	7687303.2	1183.18	450.6
SRD060	RCD	MOL	198673.724	7687405.74	1173.3	635
SRD061	RCD	MOL	198854.824	7687414.627	1164.6	456
SRD062	RCD	MOL	198919.502	7687411.272	1163.5	450.8
SRD063	RCD	MOL	199033.759	7687403.193	1164.2	450.7
SRD064	RCD	MOL	198545.799	7687409.802	1182.5	504.3
SRD065	RCD	MOL	198921.78	7687576.18	1161.5	627.5
SRD066	RCD	MOL	198854.557	7687628.396	1190.36	500
SRD067	RCD	MOL	198698.396	7687557.896	1191.04	648.4
SRD068	RCD	MOL	198881.226	7687489.949	1182.64	626.5
SRD069	RCD	MOL	198821.812	7687559.344	1180.02	651.1
SRD070	RCD	MOL	198584.202	7687710.041	1186	741.5
SRD071	RCD	MOL	198548.802	7687620.908	1183.417	567.9
SRD072	RCD	MOL	198548.202	7687680.466	1182.6	60
SRD073	RCD	MOL	198545.103	7687513.513	1173	60
SRD074	RCD	MOL	198483.327	7687733.01	1207.861	448
SRD075	RCD	MOL	198809.096	7687733.748	1172.661	450.4
SRD076	RC	MOL	199066.86	7687694.56	1174.18	440.5
SRD077	RCD	MOL	198967.179	7687662.303	1161.636	477.1
SRD078	RCD	MOL	199048.415	7687309.043	1162.257	450.3

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
SRD079	RCD	MOL	199048.68	7687475.786	1162.002	474.4
SRD080	DDH	MOL	198541.205	7687410.674	1183.042	351.4
SRD081	DDH	MOL	198553.854	7687621.572	1183.826	448.4
SRD082	DDH	MOL	198729.775	7687727.892	1173.031	374.9
SRD083	DDH	MOL	198835.34	7687412.77	1165.24	350.1
SRD084	DDH	MOL	198696.01	7687558.83	1190.3	349.9
SRD085	DDH	MOL	198372.17	7687694.54	1182.89	510.6
SRD086	DDH	MOL	198566.23	7687826.87	1205.44	453.3
SRD087	DDH	MOL	198541.19	7687410.01	1182.91	182.5
SRD088	DDH	MOL	198793.68	7687253.26	1167.155	200
SRD089	DDH	MOL	199048	7687309	1162	24
SRD089B	DDH	MOL	199045.33	7687307.65	1162.15	250
SRD090	RC	MOL	198918.76	7687575.42	1160.77	347.5
SRD091	RC	MOL	198272.22	7687578.66	1181.487	450
SRD092	RC	MOL	198197.55	7687420.35	1191.05	453.5
SRD093	DDH	MOL	199248.077	7687349.669	1166.545	450.6
SRD094	RC	MOL	198499.19	7687123.76	1171.99	450.5
SRD095	RC	MOL	198274.02	7687274.46	1172.64	450.7
SRD096	RC	MOL	198862.56	7687041.43	1169.575	450.5
SRD097	DDH	MOL	198121.971	7687228.897	1178.343	339.1
SRD098	DDH	MOL	199117.512	7686979.862	1164.956	312.3
SRD099	DDH	MOL	199364.248	7687370.581	1177.406	450.3
SRD100	DDH	MOL	198807.773	7687649.033	1201.877	513.7
SRD101	DDH	MOL	198665.943	7687696.244	1189.145	505.2
TDRC001	RC	MOL	197019.74	7692199.77	1136.81	50
TDRC002	RC	MOL	197794.4	7692198.37	1139.44	50
TDRC003	RC	MOL	198599.71	7692197.8	1142.15	50
TDRC004	RC	MOL	196602.93	7691403.06	1141.51	50
TDRC005	RC	MOL	197401.18	7691403.45	1140.41	50
TDRC006	RC	MOL	198198.34	7691400.96	1142.1	50
TDRC007	RC	MOL	199249.66	7691399.02	1147.76	50
TDRC008	RC	MOL	196601.15	7690599.7	1145.98	50
TDRC009	RC	MOL	197400.51	7690596.31	1143.65	50
TDRC010	RC	MOL	198199.5	7690600.13	1143.88	50
TDRC011	RC	MOL	199248.03	7690602.66	1147.8	50
TDRC012	RC	MOL	197399.22	7689799.33	1149.16	50
TDRC013	RC	MOL	198199.67	7689802.12	1149.68	50
WB001	RC	MOL	198720.42	7687421.6	1168	72
WB002	RC	MOL	198684.07	7687176.62	1166.365	54

DRILLHOLE	ТҮРЕ	OPERATOR	EASTING	NORTHING	RL	DEPTH
WB003	RC	MOL	198176.07	7686655.51	1169.158	36
WB004	RC	MOL	199843.16	7687351.31	1160.59	60
WB004A	RC	MOL	199839.11	7687355.31	1160.38	12
WB005	RC	MOL	199954.78	7687481.29	1159.51	96
WB005A	RC	MOL	199955.97	7687485.02	1159.44	30
WB006	RC	MOL	200014.96	7687610.47	1158.38	65
WB006A	RC	MOL	200016.47	7687614.29	1158.16	20
WB007	RC	MOL	200069.85	7687790.86	1156.64	54
WB008	RC	MOL	200041.34	7687906.55	1160.02	60
WB008A	RC	MOL	200046.18	7687912.22	1159.81	60
WB009	RC	MOL	199847.22	7687885.02	1156.67	54
WB009A	RC	MOL	199847.4	7687880.67	1156.77	14
WB010	RC	MOL	199571.797	7687820.482	1157.787	60
WB010A	RC	MOL	199568.08	7687817.89	1157.78	20
YADD002	DDH	Anglo American	198728.192	7687699.564	1177	250
YADD003	DDH	Anglo American	198364.031	7687582.001	1176	100
YADD004	DDH	Anglo American	198798.915	7687466.104	1162	240

SECTION 2 DOWNHOLE SURVEYS

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
CGD001	0	221	-60	GTD002	114	95	-52
CGD003	0	340	-50	GTD003	0	90	-60
CGD006	0	267	-50	GTD003	40	90	-61
CGD007	0	267	-50	GTD003	76	90	-60
CGD028	0	185	-89	GTD003	99	88	-59
CGD028	48	185	-89	GTD003	149	90.5	-59.5
CGD028	99	165	-89	GTD003	200	90	-60
CGD028	150	135	-89.5	GTD003	256.9	89	-59
CGD028	205	176	-87	GTD004	0	180	-70
CGD028	251	198	-83	GTD004	50	180	-67
CGD028	300	194	-81	GTD004	108	180	-66
CGD029	0	90	-53	GTD004	142	181	-65
CGD029	50	90	-54	GTD004	170	181	-65.5
CGD029	104	90	-52	GTD005	0	90	-60
CGD029	148	91	-51	GTD005	50	90	-61
CGD029	200	91	-49	GTD005	59	93	-61
CGD030	0	222	-88.5	GTD005	111	92	-61
CGD030	100	222	-88	GTD005	140	94	-61
CGD030	148	217.5	-88.5	GTD006	0	270	-60
CGD030	198	253	-88	GTD006	50	270	-58.5
CGD030	240	266	-87.5	GTD006	98	270	-57.5
CGD031	0	105	-89	GTD006	110	270	-56.5
CGD031	50	105	-89	GTD006	161	270	-57
CGD031	100	82	-88.5	GTD006	220	271	-58
CGD031	150	86	-87	GTD006	279.8	271	-58
CGD031	200	74	-86.5	GTD007	0	278	-70
CGD031	250	73	-86	GTD007	6	283	-69
CGPD5	0	267	-50	GTD007	60	273	-70
CGPDDD1	0	360	-90	GTD007	117	273	-70
GTD001	0	0	-60	GTD008	0	270	-70
GTD001	48	0	-61	GTD008	60	270	-71
GTD001	100	0	-62	GTD008	120	270	-70
GTD001	106	359	-61	GTD008	138	267	-69
GTD001	160	0	-61.5	GTD008	172	270	-68.5
GTD001	219.8	4	-62	GTD008	223	273	-68
GTD002	0	90	-55	GTD008	275	277	-68.2
GTD002	31	90	-54	GTD009	0	270	-60
GTD002	81	90	-52	GTD009	12	288	-59.7

GTD00962273-59.9GTD0161150180-57GTD009112.4273-61GTD017100180-72GTD009200.4274-61.5GTD017100180-72.5GTD009251.4274-61.5GTD017120.180-72.5GTD010090-60.GTD017152.8179-72.5GTD010759060.GTD017152.8179-72.5GTD010168.95-60.GTD018100180-71GTD0101799860.GTD018100180-73GTD01151180-60.GTD018120.5180-73GTD01151180-60.GTD018120.5180-73GTD01250.180-60.GTD018120.5180-73GTD1219018060.5GTD01820.5180-73GTD12133180-60.5GTD01910.1190157.5GTD12133184-61.5GTD02010.9148.7-57.4GTD136185.7GTD02019.9148.7-57.4GTD136185.7GTD02010.9148.9-57.4GTD136185.7GTD02010.9148.7-57.4GTD1410.9184.7-69.7GTD02019.9148.7GTD1351	DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
GTD0091122731-61GTD01411921.811-56GTD009152.42744-62GTD017100100772GTD009251.42744-61.5GTD017120180772.5GTD0100904-60.5GTD017120.817077.5GTD01075904-60.5GTD017120.818077.5GTD10168954-60GTD01810018077.5GTD11169984-60GTD01810018077.3GTD11168954-60GTD01810018077.3GTD1101804-60GTD018120.518077.3GTD111001934-60GTD018120.518077.3GTD1201804-63GTD019120.518077.5GTD121531806-63GTD019120.518077.5GTD121531846-61GTD019120.518077.5GTD13151.51846-61GTD019120.514075.5GTD131531846-61GTD019120.5140.575.4GTD13151.51846-61GTD019120.5140.575.4GTD13151.51846-69GTD02140.5156.4GTD13151.51846-69GTD02140.5156.4<	GTD009	62	273	-59.9	GTD016	150	180	-57
GTD009152.4274-6-62GT001701807-72GTD00920.4274-6-1.5GT0101100180-72.5GTD010251.4274-6-1.6GT0101120.8179-72.5GTD0107590-6-0GT0101120.8180-77.5GTD01016895-6-0GT010120.68180-77.5GTD01021998-6-0GT018100180-77.1GTD0110.1180-6-0GT018100180-77.3GTD011100180-6-0GT018156.8177-77.4GTD011100180-6-0GT018156.8177.3-77.4GTD120180-6-0GT01820.55180-77.5GTD12100180-6-63GT01910.4180-77.5GTD12153180-6-63GT01910.4180-77.5GTD12153184-6-16GT01912.019.014.0GTD13164165.7GT010210.414.0-57.4GTD14153184-6-16GT010210.414.0GTD13154184-6-16GT010210.414.0GTD14154185-6-17GT01210.414.0GTD13154154-6-16GT01210.414.0GTD14153184	GTD009	112	273	-61	GTD016	192	181	-56
GTD00920.4.274-6.1.5.GTD0171.001.101.72.GTD000251.4.274-6.1.5.GTD0171.20.1.10.1.72.5GTD0107590-6.00GTD017120.8.1.7077.5GTD01016895-6.00GTD0181.001.80-77.1GTD01021998-6.00GTD0181.001.80-77.1GTD0110.01.80-6.00GTD0181.001.80-77.3GTD0111.001.80-6.00GTD0181.56.81.77-77.4GTD0120.01.80-6.00GTD0181.56.81.77-77.3GTD120.01.80-6.05GTD0181.56.81.77-77.5GTD121.501.80-6.61GTD0191.001.90-77.5GTD121.511.80-6.62GTD0191.001.90-77.5GTD121.511.80-6.62GTD0191.001.90-77.5GTD121.511.80-6.62GTD0191.001.90-77.5GTD121.511.81-6.62GTD0191.001.90-77.5GTD131.511.84-6.61GTD0201.001.60-77.5GTD131.511.84-6.61GTD0201.011.40-77.5GTD131.511.84-6.61GTD0201.611.61-77.4GTD13 <t< td=""><td>GTD009</td><td>152.4</td><td>274</td><td>-62</td><td>GTD017</td><td>0</td><td>180</td><td>-72</td></t<>	GTD009	152.4	274	-62	GTD017	0	180	-72
GTD009251.427461.5GT0017120.213872.5GTD0100.090-60GT0017152.817972.5GTD01016895-60GT00180.018070GTD01021998-60GT0018160180-71GTD0110.0180-60GT0018120180-71GTD011100193-60GT0018120.5180-73GTD11100193-60GT001820.5180-73GTD120.0180-663GT001820.5180-73GTD12100180-663GT001910.5190-73GTD12153184-661GT001910.5190-60GTD12153184-661GT001910.5190-60GTD13153184-661GT002010.5148-573GTD14153184-661GT002010.5149.5-574GTD13151.1184-669GT002010.5148.5-574GTD14151.1184-669GT002010.5148.5-574GTD13151.1184-669GT002010.5148.5-574GTD14161.5164360GT00216.5149.5-574GTD13151.1184-669GT002016.5149.5	GTD009	200.4	274	-61.5	GTD017	60	180	-72
GTD010090-60GT0017152.817777.2.5GTD0107590-60GT0017206.8180-7.1.5GTD01016895-60GT00180180-7.0GTD01121998-60GT0018100180-7.0GTD01151186-60GT0018120.5180-7.74GTD011100193-60GT0018120.5180-7.3GTD01200180-615GT001820.55182-7.3GTD01250180-663GT0019306.75182-7.3GTD012135180-663GT001910.019.9-6.0GTD012135184-661GT0019120.19.0-5.5GTD012153184-661GT002010.015.0-6.0GTD013153184-661GT002010.014.0-5.7GTD014151184-66.9GT002010.014.0-5.7GTD01351.1184-66.9GT002010.014.0-5.7GTD014151.1184-66.9GT002010.014.0-5.7GTD01351.1184-66.9GT002010.014.0-5.7GTD01451.1184-66.9GT002010.014.0-5.7GTD01551.1184-6.6GT002010.0	GTD009	251.4	274	-61.5	GTD017	120	180	-72.5
GTD0107590 GTD01720.6.81807-1.5GTD01016895GTD01810180-7-0GTD0110180GTD018120180-7-1GTD0110180GTD018120180-7-1GTD011100193GTD018120.5180-7-3GTD0120180GTD01820.5.5180-7-3GTD0120180GTD019250180-6-3GTD019306.75182-7-3GTD01290180-6-3GTD019120.190-5-57-3GTD012113184-6-61GTD019120.190-5-5GTD012123184-6-61GTD019120.190-5-5GTD130185-7-70GTD02010014.8-5-8GTD13164185-7-70GTD02010114.8-5-8GTD13151.1184-6-95GTD02010214.8.9-5-7GTD13151.1184-6-95GTD02010214.9.3-5-7GTD14151.1184-6-95GTD02110.132.6.4-5-7GTD1321.1.1184-6-95GTD02110.132.6.4-5-7GTD14151.1189-5-6GTD02110.132.6.5-5-7 </td <td>GTD010</td> <td>0</td> <td>90</td> <td>-60</td> <td>GTD017</td> <td>152.8</td> <td>179</td> <td>-72.5</td>	GTD010	0	90	-60	GTD017	152.8	179	-72.5
GTD0101689560GTD01801801.70GTD0110180-60GTD018120180-71GTD0110180-60GTD018120180-73GTD011100193-60GTD018120.5180-73GTD0120180-65GTD01820.5180-73GTD0120180-63GTD019306.75182-73GTD01290180-63GTD019306.75182-73GTD012135180-66GTD019120.190-60GTD012135180-66GTD019120.190-57.5GTD012153184-661GTD0210150-60GTD0130185-70GTD0230148-58.9GTD136185-70GTD02109148.7-57.4GTD1351184-69.5GTD02109148.9-57.4GTD1351.1189-69GTD0210932.6-57.8GTD14151.1189-69GTD0210932.6-57.8GTD13245.7190-56GTD0210532.6-57.8GTD14151.1189-56.9GTD0210532.6-57.8GTD14245.7190-55GTD0210532.6-57.8GTD14 <td< td=""><td>GTD010</td><td>75</td><td>90</td><td>-60</td><td>GTD017</td><td>206.8</td><td>180</td><td>-71.5</td></td<>	GTD010	75	90	-60	GTD017	206.8	180	-71.5
GTD0102199860GTD01860180-71GTD0110180-60GTD018120180-73GTD01151186-60GTD018200.5180-74GTD0120180-65GTD018200.5180-73GTD01250180-65GTD018200.5180-73GTD01250180-66GTD018306.75182-72.5GTD012135180-66GTD01910.090-60GTD012135180-61GTD01910.190-67.5GTD012153184-61GTD02010.0150-60GTD0130185-770GTD02010.9148.9-67.5GTD01410185-770GTD02010.9148.9-57.4GTD0130185-770GTD02010.9148.9-57.4GTD014151.1184-695GTD02010.2149.3-55.4GTD013211.1184-695GTD02011.032.0-57.4GTD014151.1189-69GTD02011.032.0-57.4GTD013211.1180-69GTD02016.2149.3-56.4GTD014151.1189-56GTD02010.032.0-57.8GTD01410.032.0-55.3GTD02210.032.0 <td>GTD010</td> <td>168</td> <td>95</td> <td>-60</td> <td>GTD018</td> <td>0</td> <td>180</td> <td>-70</td>	GTD010	168	95	-60	GTD018	0	180	-70
GTD0110160-60GTD0111201160-73GTD01151166-60GTD018156.8177-74GTD011100193-60GTD01820.5180-73GTD0120180-65GTD01820.5182-73GTD01250180-663GTD019306.7182-72.5GTD012190180-663GTD01910.190-75.5GTD012153184-661GTD010120.190-57.5GTD012204185-70GTD0210.9148.9-57.9GTD0130185-70GTD0210.9148.9-57.4GTD0130185-70GTD0210.9148.9-57.4GTD01351184-69.5GTD0210.9148.9-57.4GTD0139184.1-69.5GTD0210.9148.9-57.4GTD014151.1189-69.5GTD0210.9148.9-57.4GTD0139184.1-69.5GTD0210.9148.9-57.4GTD014151.1189-69.5GTD0210.9148.9-57.4GTD014151.1189-69.5GTD0210.913.0-57.8GTD014032.0-55.3GTD0210.932.0-57.8GTD014151.132.015.5GTD0210.9 <t< td=""><td>GTD010</td><td>219</td><td>98</td><td>-60</td><td>GTD018</td><td>60</td><td>180</td><td>-71</td></t<>	GTD010	219	98	-60	GTD018	60	180	-71
GTD0115118660GTD018156.8177-74GTD01110019360GTD01820.5180-73GTD012018065GTD018254.4182-773GTD0125018063GTD018306.75182-72.5GTD0129018063GTD0191090-60GTD012135184-61GTD019120.190-67.5GTD012153184-61GTD0201001150-60GTD0130185-70GTD020109148.7-57.4GTD0136185-70GTD020109148.9-57GTD01351184-69.5GTD020189148.9-57GTD01399184-69GTD020189149.3-56.2GTD013211.1189-69GTD020189150.1-57.8GTD014245.7190-56.3GTD021100320.6-57.8GTD14245.7190-56.3GTD022163326.4-57.8GTD1486320-55.3GTD02110.5320.6-57.8GTD14105320.7-55.3GTD02210.5320.7-57.8GTD14153320-55.3GTD02210.5320.7-57.8GTD14155320-55.3GTD02210.532	GTD011	0	180	-60	GTD018	120	180	-73
GTD01110019360GTD01820.5.180-73GTD0120180-65GTD018254.4182-73.5GTD01250180-663GTD018306.75182-72.5GTD01290180-663GTD0199.09.0-660GTD012153184-661GTD019120.19.0-57.5GTD012204185-70GTD020100148-660GTD0130185-70GTD020109148.7-57.4GTD0136185-70GTD020109148.9-57.5GTD01351184-669.5GTD020109148.9-57.5GTD01351184-669.5GTD020108148.9-57.4GTD01351.1189-669GTD020108149.3-55.2GTD013211.1186-669GTD02110032.0-57.8GTD014245.7190-669GTD02110.832.6-57.8GTD14215320-55.3GTD02110.832.6-55.8GTD1410532.0-55.3GTD02210.532.0-62.5GTD1410532.0-55.3GTD02210.532.0-62.5GTD1410532.0-55.3GTD02210.532.0-62.5GTD1410532.0-55.5GTD022	GTD011	51	186	-60	GTD018	156.8	177	-74
GTD012018065GTD018254.418273GTD0125018063GTD018306.7518272.5GTD0129018063GTD01952.69060GTD01213518461GTD01952.69057.5GTD01220418561GTD020015060GTD013018570GTD0203014858.9GTD0131618570GTD02099148.757.4GTD0135118469.5GTD020102149.357.4GTD0135118469.5GTD020112149.356.2GTD013151.118969GTD0201189150.157.4GTD013211.118669GTD020189150.157.4GTD013221.118669GTD020189150.157.4GTD014032053GTD02110332.856.7GTD01415032055GTD02110332.657.4GTD0146320-55GTD02210532.056.7GTD01410532.0-55.4GTD02210532.056.7GTD01410532.0-55.3GTD02210532.056.7GTD01410532.0-55.3GTD022 </td <td>GTD011</td> <td>100</td> <td>193</td> <td>-60</td> <td>GTD018</td> <td>200.5</td> <td>180</td> <td>-73</td>	GTD011	100	193	-60	GTD018	200.5	180	-73
GTD0125018063GTD018306.7518272.5GTD0129018063GTD019090-60GTD01213518461GTD01952.690-57.5GTD01220418561GTD0200150-60GTD0130185-70GTD02030148-58.9GTD0136185-70GTD02099148.7-57.4GTD01351184-69.5GTD020120149.3-56.2GTD01351184-69.5GTD0201162149.3-56.2GTD01399184-69.6GTD020189150.1-57.4GTD013211.1189-69GTD020189150.1-57.4GTD014215.1189-69GTD020189150.1-55.4GTD0132245.7190-68GTD02110320-57.8GTD0140320-553GTD02110132.6-56.6GTD014105320-553GTD02210532.0-62.5GTD014153323-553GTD02210532.0-62.5GTD01415532.0-553GTD02210532.0-62.5GTD01415532.0-553GTD02210532.0-62.5GTD0150330-553GTD02210532.0	GTD012	0	180	-65	GTD018	254.4	182	-73
GTD01290180GTD019090GTD012135180GTD01912.0.190GTD012204185GTD020150GTD0130185GTD0200.0148GTD0130185GTD0200.0148.7GTD0136185GTD020129148.7GTD0135118469.5GTD0201162149.3GTD01351.118969GTD0201189150.1GTD013151.118969GTD0201189150.1GTD013245.719068GTD02110.032057.8GTD014032054GTD02210.032957.8GTD0144532054GTD02210.032057.8GTD01415532354GTD02210.032057.8GTD01415032054GTD02210.032057.8GTD01415532354GTD02210.032057.8GTD01415532354GTD02210.032057.9GTD01515032054GTD02210.032057.9GTD014153	GTD012	50	180	-63	GTD018	306.75	182	-72.5
GTD01213518062GTD01952.69059GTD01215318461GTD019120.190-57.5GTD01220418561GTD0200150-60GTD013018570GTD020300148-58.9GTD013618570GTD02099148.7-57.4GTD01351184-69.5GTD020112148.9-57.4GTD01351184-69.5GTD020112148.9-57.4GTD013151.1189-69GTD020118150.1-57.4GTD013211.1186-69GTD020118150.1-57.4GTD014215.1189-669GTD021100330-56.3GTD013245.7190-68GTD02110032057.8GTD01445320-553GTD02116332.9.5-57.8GTD01445320-553GTD02210532.0-62.5GTD014105320-553GTD02210532.0-62.5GTD01410532.0-553GTD02210532.0-62.5GTD01410533.0-553GTD02210532.0-62.5GTD015033.0-553GTD02310.59.1-70.7GTD0155433.0-553GTD02310.5 <t< td=""><td>GTD012</td><td>90</td><td>180</td><td>-63</td><td>GTD019</td><td>0</td><td>90</td><td>-60</td></t<>	GTD012	90	180	-63	GTD019	0	90	-60
GTD01215318461GTD019120.19057.5GTD01220418561GTD0201001501-60GTD013018570GTD02030014858.9GTD0136185-70GTD020199148.7-57.4GTD01351184-69.5GTD0201129148.9-57.5GTD01399184-69.5GTD0201162149.3-55.2GTD013151.1189-69GTD020189150.1-55.4GTD013211.1186-69GTD02110330-660GTD013245.7190-68GTD02110329.5-57.8GTD0140320-53GTD021110329.6-57.6GTD01445320-55GTD022100320-62.5GTD014105320-55GTD022100320-62.5GTD014105320-55GTD022105321-62.5GTD014105320-55GTD022105322-62.5GTD014105330-55GTD022125321-62.5GTD01596330-55GTD02310591-77.0GTD015150330-55GTD02310591-77.0GTD015150330-55GTD02310591-77.0<	GTD012	135	180	-62	GTD019	52.6	90	-59
GTD01220418561GTD020015060GTD013018570GTD02030014858.9GTD013618570GTD02099148.757.4GTD0135118469.5GTD0201129148.957.9GTD0139918469.5GTD0201162149.356.2GTD013151.118969GTD020189150.155.4GTD013211.118669GTD02110033060GTD013245.719068GTD021100329.557.8GTD01445320-53GTD021101329.656.6GTD01445320-55GTD02210032061.5GTD014105320-553GTD02210032062.5GTD014153323-553GTD02210032062.5GTD014153323-553GTD02210532162.5GTD0150330-553GTD02210532162.5GTD01554330-553GTD02210532162.5GTD01596330-553GTD0231059170GTD015150330-553GTD0231059170GTD016150180-55.5GTD023120.5	GTD012	153	184	-61	GTD019	120.1	90	-57.5
GTD013018570GTD02033014858.9GTD013618570GTD02099148.757.4GTD0135118469.5GTD0201129148.9-56.2GTD0139918469GTD0201162149.3-55.2GTD013151.1189-69.9GTD020189150.1-55.4GTD013211.1186-69.9GTD0210330-60.0GTD013245.7190-68.8GTD02133328.4-58.3GTD0140320-53GTD02163329.5-57.8GTD01445320-54GTD022100320-56.2GTD014105320-553GTD022105320-62.5GTD014153320-553GTD022105320-62.5GTD0141533233253GTD022105320-62.5GTD014153323-553GTD022105321-62.5GTD0150330-553GTD022105322-62.5GTD015160330-553GTD023105321-62.5GTD015150330-553GTD02310591-71GTD015150330-553GTD02310591-71GTD015150330-553GTD02310594 <td< td=""><td>GTD012</td><td>204</td><td>185</td><td>-61</td><td>GTD020</td><td>0</td><td>150</td><td>-60</td></td<>	GTD012	204	185	-61	GTD020	0	150	-60
GTD0136185-70GTD02099148.757.4GTD0135118469.5GTD0201129148.9-57GTD01399184-69GTD020162149.3-56.2GTD013151.1189-69GTD020189150.1-55.4GTD013211.1186-69GTD02130320.4-58.3GTD013245.7190-68GTD02133328.4-58.3GTD0140320-53GTD021163329.5-57.8GTD01445320-53GTD022105320-62.5GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022105320-62.5GTD014153323-53GTD022105321-62.5GTD014153323-53GTD022105322-62.5GTD014153323-53GTD022105321-62.5GTD0150330-53GTD02310591-71GTD015160330-53GTD02310592-70GTD015150330-53GTD02310591-71GTD015150330-55GTD02310592-70GTD0160180-555GTD02320.594-69	GTD013	0	185	-70	GTD020	30	148	-58.9
GTD0135118469.5GTD020129148.957GTD0139918469GTD020162149.356.2GTD013151.118969GTD021100330-56.4GTD013211.118669GTD021100330-56.3GTD013245.719068GTD02133328.4-58.3GTD0140320-57.3GTD02163329.5-57.8GTD01445320-553GTD022100320-56.6GTD01486320-553GTD022105320-62.5GTD0141053202-53GTD022105320-62.5GTD014153323-553GTD022105321-62.5GTD0141533235-53GTD022105321-62.5GTD0141533235-53GTD022105321-62.5GTD01503301-55GTD022201322-62.5GTD01554330-553GTD02310591-71GTD01596330-553GTD02310591-71GTD0160180-555GTD02310594-60GTD01654180-555GTD02420.594-60GTD016102180-555.5GTD024100180-56	GTD013	6	185	-70	GTD020	99	148.7	-57.4
GTD0139918469GTD020162149.356.2GTD013151.118969GTD020189150.155.4GTD013211.118669GTD02103306-60GTD013245.719068GTD02133328.458.3GTD0140320-53GTD02163329.5-57.8GTD01445320-53GTD022100320-56.6GTD01486320-54GTD022105320-62.5GTD014105320-53GTD022105320-62.5GTD014105320-53GTD022105320-62.5GTD014105320-53GTD022105321-62.5GTD014153323-53GTD022105322-62.5GTD014153323-55GTD022201322-62.5GTD0150330-55GTD02320190-70GTD01596330-53GTD02310591-71GTD0160180-55GTD02320194-70GTD0160180-56.5GTD02320.594-66GTD016102180-56.5GTD0242094-60GTD016102180-56.5GTD02420.594-61GTD	GTD013	51	184	-69.5	GTD020	129	148.9	-57
GTD013151.1189-69GTD020189150.155.4GTD013211.1186-69GTD0210330-60GTD013245.7190-68GTD02133328.4-58.3GTD0140320-53GTD021163329.5-57.8GTD01445320-53GTD021110329.6-56.6GTD01445320-54GTD022105320-61.5GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022105321-62.5GTD014153325-53GTD022150321-62.5GTD0150330-55GTD022252321-61GTD01596330-53GTD02310591-70GTD015150330-55GTD02310591-70GTD0160180-56.5GTD02320.594-60GTD01654180-56.5GTD0240290-60GTD016102180-56.5GTD024100290-60GTD016102180-56.5GTD0240290-60GTD016102180-56.5GTD024100290-60	GTD013	99	184	-69	GTD020	162	149.3	-56.2
GTD013211.118669GTD0211033060GTD013245.719068GTD02133328.458.3GTD014032053GTD021163329.557.8GTD0144532053GTD021110329.656.6GTD0144532054GTD02210032061.6GTD01410532053GTD022105320-62.5GTD01410532353GTD022150321-62.5GTD014153323-53GTD022150322-62.5GTD014215325-53GTD022201322-62.5GTD0150330-55GTD022201322-62.5GTD01554330-53GTD02310591-71GTD015150330-53GTD02310592-70GTD0160180-55GTD02320194-70GTD01654180-56.5GTD0240290-60GTD016102180-56.5GTD0240290-60GTD016102273-59.9GTD016150160160	GTD013	151.1	189	-69	GTD020	189	150.1	-55.4
GTD013245.719068GTD02133328.458.3GTD014032053GTD02163329.5-57.8GTD01445320-53GTD021110329.6-56.6GTD01486320-54GTD0220320-61GTD014105320-53GTD022105320-62.5GTD014105323-53GTD022105321-62.5GTD014153323-53GTD022150321-62.5GTD014153325-553GTD022201322-62.5GTD0150330-55GTD022201322-61GTD01554330-553GTD02310591-71GTD01596330-53GTD02310591-71GTD0160180-56.5GTD02320.594-60GTD01654180-56.5GTD0240290-60GTD016102180-56.5GTD0240290-60GTD0362273-59.9GTD016150180-57	GTD013	211.1	186	-69	GTD021	0	330	-60
GTD0140320-53GTD021663329.5-57.8GTD01445320-53GTD021110329.6-56.6GTD01486320-54GTD0220320-61GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022150321-62.5GTD014153325-53GTD022201322-62GTD0150330-55GTD022252321-61GTD01554330-53GTD02310591-71GTD015150330-53GTD02310591-71GTD0160180-55GTD02320194-70GTD01654180-56.5GTD023220.594-60GTD016102180-56.5GTD0240290-60GTD01654273-59.9GTD016150160-51	GTD013	245.7	190	-68	GTD021	33	328.4	-58.3
GTD01445320-53GTD021110329.6-56.6GTD01486320-54GTD0220320-61GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022150321-62.5GTD014215325-53GTD022201322-62GTD0150330-55GTD022252321-61GTD01554330-53GTD023090-70GTD016150330-53GTD02310591-71GTD0160180-55GTD02320194-70GTD01654180-56.5GTD02320.594-69GTD016102180-56.5GTD0240290-60GTD01662273-59.9GTD016150160-56	GTD014	0	320	-53	GTD021	63	329.5	-57.8
GTD01486320-54GTD0220320-61GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022150321-62.5GTD014215325-53GTD022201322-62GTD0150330-55GTD022202321-61GTD01554330-53GTD023090-70GTD01596330-53GTD02310591-71GTD015150330-55GTD02320192-70GTD0160180-55GTD02320194-70GTD01654180-56.5GTD023220.594-66GTD016102180-56.5GTD0240290-60GTD01662273-59.9GTD01615016-57	GTD014	45	320	-53	GTD021	110	329.6	-56.6
GTD014105320-53GTD022105320-62.5GTD014153323-53GTD022150321-62.5GTD014215325-53GTD022201322-62GTD0150330-55GTD022252321-61GTD01554330-53GTD023090-70GTD01596330-53GTD02310591-71GTD0160180-55GTD02320194-70GTD01654180-56.5GTD0240290-66GTD016102180-56.5GTD0240290-60GTD0962273-59.9GTD016150150-57-57-57	GTD014	86	320	-54	GTD022	0	320	-61
GTD014153323-53GTD022150321-62.5GTD014215325-53GTD022201322-62GTD0150330-55GTD022252321-61GTD01554330-53GTD023090-70GTD01596330-53GTD02310591-71GTD015150330-53GTD02310591-70GTD0160180-55GTD02320194-70GTD01654180-56.5GTD023220.594-69GTD016102180-56.5GTD0240290-60GTD0962273-59.9GTD01615016-57	GTD014	105	320	-53	GTD022	105	320	-62.5
GTD014215325-53GTD022201322-62GTD0150330-55GTD022252321-61GTD01554330-53GTD023090-70GTD01596330-53GTD02310591-71GTD015150330-53GTD02315392-70GTD0160180-55GTD02320194-70GTD01654180-56.GTD023220.594-69GTD016102180-56.5GTD0240290-60GTD0962273-59.9GTD0161501-71	GTD014	153	323	-53	GTD022	150	321	-62.5
GTD0150330-55GTD022252321-61GTD01554330-53GTD023090-70GTD01596330-53GTD02310591-71GTD015150330-53GTD02315392-70GTD0160180-55GTD02320194-70GTD01654180-565GTD023220.594-69GTD016102180-56.5GTD0240290-60GTD0962273-59.9GTD0161501-77	GTD014	215	325	-53	GTD022	201	322	-62
GTD015 54 330 -53 GTD023 0 90 -70 GTD015 96 330 -53 GTD023 105 91 -71 GTD015 96 330 -53 GTD023 105 91 -71 GTD015 150 330 -53 GTD023 153 92 -70 GTD016 0 180 -55 GTD023 201 94 -70 GTD016 54 180 -56 GTD023 220.5 94 -69 GTD016 102 180 -56.5 GTD024 0 290 -60 GTD09 62 273 -59.9 GTD016 150 1 -57	GTD015	0	330	-55	GTD022	252	321	-61
GTD015 96 330 -53 GTD023 105 91 -71 GTD015 150 330 -53 GTD023 105 92 -70 GTD016 0 180 -55 GTD023 201 94 -70 GTD016 54 180 -56 GTD023 220.5 94 -69 GTD016 102 180 -56.5 GTD024 0 290 -60 GTD09 62 273 -59.9 GTD016 150 180 -57	GTD015	54	330	-53	GTD023	0	90	-70
GTD015 150 330 -53 GTD023 153 92 -70 GTD016 0 180 -55 GTD023 201 94 -70 GTD016 54 180 -56 GTD023 220.5 94 -69 GTD016 102 180 -56.5 GTD024 0 290 -60 GTD09 62 273 -59.9 GTD016 150 180 -57	GTD015	96	330	-53	GTD023	105	91	-71
GTD016 0 180 -55 GTD023 201 94 -70 GTD016 54 180 -56 GTD023 220.5 94 -69 GTD016 102 180 -56.5 GTD024 0 290 -60 GTD009 62 273 -59.9 GTD016 150 180 -57	GTD015	150	330	-53	GTD023	153	92	-70
GTD016 54 180 -56 GTD023 220.5 94 -69 GTD016 102 180 -56.5 GTD024 0 290 -60 GTD009 62 273 -59.9 GTD016 150 180 -57	GTD016	0	180	-55	GTD023	201	94	-70
GTD016 102 180 -56.5 GTD024 0 290 -60 GTD009 62 273 -59.9 GTD016 150 180 -57	GTD016	54	180	-56	GTD023	220.5	94	-69
GTD009 62 273 -59.9 GTD016 150 180 -57	GTD016	102	180	-56.5	GTD024	0	290	-60
	GTD009	62	273	-59.9	GTD016	150	180	-57

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
GTD024	60	290	-61	GTD033	0	180	-50.8
GTD024	101.4	291	-61	GTD033	50	180	-47.7
GTD024	149.4	292	-61	GTD033	110	180	-46.9
GTD024	203.4	292	-61	GTD033	117	187	-46.6
GTD024	224.4	292	-61	GTD033	147	186	-46.3
GTD025	0	360	-50	GTD033	165	186	-45.8
GTD025A	50.1	356	-50.5	GTD034	0	360	-48.8
GTD025A	0	360	-50	GTD034	50	360	-50.2
GTD026	0	180	-50	GTD034	110	360	-51.6
GTD027	0	360	-60	GTD034	117	3.6	-51.4
GTD027	51.4	355	-60	GTD034	147	3.8	-50.8
GTD027	120	356	-59	GTD034	168	2.7	-50.1
GTD028	0	180	-60	GTD035	0	180	-50
GTD028	51.5	175	-58	GTD035	40.5	182	-51
GTD028	99.5	177	-58	GTD036	0	0	-90
GTD028	131.4	171	-58	GTD037	0	0	-60
GTD029	0	360	-60.3	GTD037	46	0	-59
GTD029	50	360	-59.2	GTD038	0	180	-50
GTD029	100	360	-59.6	GTD038	24	179	-51.5
GTD029	111	6	-59	GTD039	0	0	-90
GTD029	150	7	-57.6	GTD040	0	0	-90
GTD030	0	180	-60	GTD041	0	0	-90
GTD030A	0	180	-50.2	GTD042	0	0	-90
GTD030A	50	180	-48.3	GTD043	0	0	-90
GTD030A	110	180	-46.4	GTD044	0	0	-90
GTD030A	117	177	-45.8	GTD045	0	0	-90
GTD030A	147	176	-45.4	GTD046	0	0	-90
GTD030A	168	176	-45	GTD047	0	0	-90
GTD031	0	180	-59.9	GTD048	0	0	-90
GTD031	50	180	-56.3	GTD049	0	0	-90
GTD031	100	180	-53.1	GTD050	0	0	-90
GTD031	146	180.2	-52.4	GTD051	0	0	-90
GTD032	0	360	-59.9	GTD052	0	0	-90
GTD032	50	360	-59.7	GTD053	0	0	-90
GTD032	100	360	-57.8	GTD054	0	0	-90
GTD032	108	7	-58	GTD055	0	0	-90
GTD032	138	5.7	-57.4	GTD056	0	0	-90
GTD032	150	6.7	-57.4	GTD057	0	0	-90
GTD024	60	290	-61	GTD058	0	0	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
GTD059	0	0	-90	GTD071	30	17	-50.2
GTD060	0	0	-90	GTD071	60	17	-50.2
GTD061	0	0	-90	GTD072	0	320	-50
GTD062	0	315	-60	GTD072	30	319	-50
GTD062	36	313.8	-54.3	GTD072	60	320	-50.2
GTD062	69	314.9	-54.6	GTD073	0	287	-60
GTD062	99	314.2	-54.8	GTD073	42	287	-59.6
GTD062	129	314.6	-54.6	MMDG16	0	0	-90
GTD062	159	313.8	-54.4	MMDG16	54	0	-90
GTD062	192	315.6	-54.6	MMDG17	0	0	-90
GTD062	225	313.2	-54.4	MMDG17	62	0	-90
GTD062	249.5	314.9	-54.8	NGD001	0	0	-90
GTD063	0	360	-60	NGD002	0	0	-90
GTD063	36	4	-60.2	NGD003	0	0	-90
GTD063	60	4	-59.2	NGD004	0	0	-90
GTD064	0	360	-90	NGD005	0	0	-90
GTD064	30.1	360	-90	NGD006	0	0	-90
GTD065	0	360	-90	NGD007	0	0	-90
GTD065	31.6	360	-90	NGD008	0	0	-90
GTD066	0	312	-65	NGD009	0	0	-90
GTD066	40	312	-68.2	NGD010	0	0	-90
GTD066	80	312	-67.3	NGD011	0	0	-90
GTD066	114	308.6	-67.6	NGD012	0	0	-90
GTD066	144	310.8	-67.6	NGD013	0	0	-90
GTD066	171	312.8	-67	NGD014	0	0	-90
GTD067	0	330	-64.2	NGD015	0	0	-90
GTD067	60	330	-64.1	NGD016	0	0	-90
GTD067	120	330	-66.6	NGD017	0	0	-90
GTD067	147	337.4	-66.6	NGD018	0	0	-90
GTD067	177	335.4	-66.4	NGD019	0	0	-90
GTD067	210	335	-66.4	NGD020	0	0	-90
GTD068	0	360	-65.3	NGD021	0	0	-90
GTD068	60	360	-68.2	NGD022	0	0	-90
GTD069	0	193	-90	NGD023	0	0	-90
GTD069	50	193	-89	NGD024	0	0	-90
GTD070	0	25	-60	NGD025	0	231.42	-88.56
GTD070	50	27	-59	NGD025	10	162.07	-88.46
GTD071	0	20	-50	NGD025	20	176.19	-88.35
GTD071	30	17	-50.2	NGD025	30	179.79	-88.13

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
NGD025	40	198.17	-87.8	NGD025	420	211.19	-81.14
NGD025	50	203.37	-87.59	NGD025	430	211.77	-81.12
NGD025	60	205.65	-87.6	NGD025	440	211.58	-81.09
NGD025	70	208.96	-87.52	NGD025	450	212	-81.08
NGD025	80	209.65	-87.23	NGD025	460	212.28	-81.06
NGD025	90	206.38	-87.31	NGD025	470	212.55	-81.06
NGD025	100	216.1	-87.39	NGD025	480	212.79	-80.99
NGD025	110	224	-86.82	NGD025	490	212.65	-81.02
NGD025	120	222.99	-86.87	NGD025	500	213.03	-81.02
NGD025	130	226.57	-86.27	NGD025	510	213.34	-81.02
NGD025	140	226.46	-86.11	NGD025	520	209.61	-80.99
NGD025	150	226.73	-86.08	NGD025	530	215.45	-80.98
NGD025	160	226.07	-85.99	NGD025	540	214.22	-80.99
NGD025	170	228.25	-85.99	NGD025	550	215.33	-80.96
NGD025	180	230.1	-85.94	NGD025	552	213	-81
NGD025	190	231.98	-85.8	NGD025	560	213.87	-80.96
NGD025	200	233.52	-85.55	NGD025	570	256.34	-80.96
NGD025	210	236.03	-85.28	NGD025	580	220.33	-80.97
NGD025	220	244.06	-85.13	NGD025	590	279.21	-80.93
NGD025	230	237.62	-85.17	NGD025	600	215.92	-80.93
NGD025	240	236.94	-84.95	NGD025	610	215.8	-80.9
NGD025	250	236.14	-84.79	NGD025	620	216.48	-80.86
NGD025	260	235.59	-84.62	NGD025	630	213.74	-80.81
NGD025	270	234.27	-84.36	NGD025	640	216.96	-80.84
NGD025	280	231.4	-83.68	NGD025	650	217.97	-80.83
NGD025	290	228.39	-83.7	NGD025	660	218.27	-80.83
NGD025	300	230.06	-83.87	NGD025	670	216.11	-80.8
NGD025	310	227.98	-83.87	NGD025	680	218.14	-80.79
NGD025	320	224.3	-83.35	NGD025	690	218.12	-80.8
NGD025	330	221.82	-82.8	NGD025	700	219.17	-80.83
NGD025	340	219.36	-82.16	NGD025	720	219.23	-80.77
NGD025	350	217.27	-81.72	NGD026	0	0	-90
NGD025	360	216.11	-81.36	NGD027	0	0	-90
NGD025	370	213.74	-81.36	SRC001	0	0	-90
NGD025	380	212.97	-81.36	SRC001	50	0	-90
NGD025	390	211.82	-81.25	SRC002	0	0	-90
NGD025	20	176.19	-88.35	SRC002	50	0	-90
NGD025	400	211.34	-81.2	SRC003	0	0	-90
NGD025	410	210.9	-81.15	SRC003	50	0	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC004	0	0	-90	SRC027	50	0	-90
SRC004	50	0	-90	SRC028	0	0	-90
SRC006	0	0	-90	SRC028	50	0	-90
SRC006	50	0	-90	SRC029	0	0	-90
SRC007	0	0	-90	SRC029	50	0	-90
SRC007	50	0	-90	SRC030	0	0	-90
SRC008	0	0	-90	SRC030	50	0	-90
SRC008	50	0	-90	SRC032	0	0	-90
SRC010	0	0	-90	SRC032	50	0	-90
SRC010	48	0	-90	SRC033	0	0	-90
SRC011	0	0	-90	SRC033	50	0	-90
SRC011	50	0	-90	SRC034	0	0	-90
SRC012	0	0	-90	SRC034	50	0	-90
SRC012	50	0	-90	SRC035	0	0	-90
SRC013	0	0	-90	SRC035	50	0	-90
SRC013	50	0	-90	SRC037	0	0	-90
SRC015	0	0	-90	SRC037	50	0	-90
SRC015	50	0	-90	SRC038	0	0	-90
SRC016	0	0	-90	SRC038	50	0	-90
SRC016	50	0	-90	SRC039	0	0	-90
SRC017	0	0	-90	SRC039	50	0	-90
SRC017	50	0	-90	SRC040	0	0	-90
SRC018	0	0	-90	SRC040	50	0	-90
SRC018	50	0	-90	SRC041	0	0	-90
SRC019	0	0	-90	SRC041	50	0	-90
SRC019	50	0	-90	SRC042	0	0	-90
SRC020	0	0	-90	SRC042	50	0	-90
SRC020	50	0	-90	SRC043	0	0	-90
SRC021	0	0	-90	SRC043	50	0	-90
SRC021	50	0	-90	SRC044	0	0	-90
SRC022	0	0	-90	SRC044	50	0	-90
SRC022	50	0	-90	SRC045	0	0	-90
SRC023	0	0	-90	SRC045	50	0	-90
SRC023	50	0	-90	SRC046	0	0	-90
SRC024	0	0	-90	SRC046	50	0	-90
SRC024	50	0	-90	SRC047	0	0	-90
SRC026	0	0	-90	SRC047	50	0	-90
SRC026	50	0	-90	SRC048	0	0	-90
SRC027	0	0	-90	SRC048	50	0	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC049	0	0	-90	SRC068	50	0	-90
SRC049	50	0	-90	SRC069	0	0	-90
SRC050	0	0	-90	SRC069	50	0	-90
SRC050	50	0	-90	SRC070	0	0	-90
SRC051	0	0	-90	SRC070	50	0	-90
SRC051	50	0	-90	SRC071	0	0	-90
SRC052	0	0	-90	SRC071	50	0	-90
SRC052	50	0	-90	SRC072	0	0	-90
SRC053	0	0	-90	SRC072	50	0	-90
SRC053	50	0	-90	SRC073	0	0	-90
SRC054	0	0	-90	SRC073	50	0	-90
SRC054	50	0	-90	SRC074	0	0	-90
SRC055	0	0	-90	SRC074	50	0	-90
SRC055	50	0	-90	SRC075	0	0	-90
SRC056	0	0	-90	SRC075	50	0	-90
SRC056	50	0	-90	SRC076	0	0	-90
SRC057	0	0	-90	SRC076	50	0	-90
SRC057	50	0	-90	SRC077	0	0	-90
SRC058	0	0	-90	SRC077	50	0	-90
SRC058	50	0	-90	SRC078	0	0	-90
SRC059	0	0	-90	SRC078	50	0	-90
SRC059	50	0	-90	SRC079	0	0	-90
SRC060	0	0	-90	SRC079	50	0	-90
SRC060	50	0	-90	SRC080	0	0	-90
SRC061	0	0	-90	SRC080	50	0	-90
SRC061	50	0	-90	SRC081	0	0	-90
SRC062	0	0	-90	SRC081	50	0	-90
SRC062	50	0	-90	SRC082	0	0	-90
SRC063	0	0	-90	SRC082	50	0	-90
SRC063	50	0	-90	SRC083	0	0	-90
SRC064	0	0	-90	SRC083	50	0	-90
SRC064	50	0	-90	SRC085	0	0	-90
SRC065	0	0	-90	SRC085	50	0	-90
SRC065	50	0	-90	SRC086	0	0	-90
SRC066	0	0	-90	SRC086	50	0	-90
SRC066	50	0	-90	SRC087	0	0	-90
SRC067	0	0	-90	SRC087	50	0	-90
SRC067	50	0	-90	SRC088	0	0	-90
SRC068	0	0	-90	SRC088	50	0	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC089	0	0	-90	SRC100	100	0	-88
SRC089	50	0	-90	SRC100	200	0	-86
SRC090	0	0	-90	SRC100	240	0	-85
SRC090	50	0	-90	SRC101	0	0	-90
SRC091	0	0	-90	SRC101	50	0	-90
SRC091	50	0	-90	SRC101	100	0	-88
SRC092	0	0	-90	SRC101	150	0	-86
SRC092	50	0	-90	SRC101	200	0	-85
SRC093	0	0	-90	SRC101	240	0	-84
SRC093	250	0	-90	SRC102	0	0	-90
SRC094	0	0	-90	SRC102	50	0	-89
SRC094	250	0	-90	SRC102	100	0	-89
SRC095	0	0	-90	SRC102	150	0	-88
SRC095	50	0	-88	SRC102	200	0	-87
SRC095	100	0	-88	SRC102	240	0	-87
SRC095	150	0	-88	SRC103	0	0	-90
SRC095	200	0	-87	SRC103	100	0	-90
SRC095	250	0	-87	SRC103	200	0	-89.5
SRC096	0	0	-90	SRC103	240	0	-89
SRC096	50	0	-89	SRC104	0	0	-90
SRC096	100	0	-87	SRC104	100	0	-88
SRC096	150	0	-87	SRC104	200	0	-87
SRC096	200	0	-85	SRC104	240	0	-85.5
SRC096	245	0	-84	SRC105	0	0	-90
SRC097	0	0	-90	SRC105	100	0	-86.5
SRC097	50	0	-89	SRC105	200	0	-84.5
SRC097	100	0	-89	SRC105	246	0	-84.2
SRC097	150	0	-89	SRC106	0	0	-90
SRC097	200	0	-88.5	SRC106	240	0	-85
SRC097	250	0	-88	SRC107	0	0	-90
SRC098	0	0	-90	SRC107	100	0	-88
SRC098	100	0	-88	SRC107	200	0	-88
SRC098	200	0	-87	SRC107	244	0	-87
SRC098	240	0	-87	SRC108	0	0	-90
SRC099	0	0	-90	SRC108	100	0	-87
SRC099	100	0	-88	SRC108	200	0	-86.5
SRC099	200	0	-87.5	SRC108	246	0	-86
SRC099	240	0	-86	SRC109	0	0	-90
SRC100	0	0	-90	SRC109	100	0	-87

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC109	200	0	-86	SRC118	300	0	-86.5
SRC109	246	0	-86	SRC119	0	0	-90
SRC110	0	0	-90	SRC119	100	0	-88
SRC110	100	0	-88	SRC119	200	0	-87.25
SRC110	200	0	-87	SRC119	300	0	-86.5
SRC110	244	0	-87	SRC120	0	0	-90
SRC111	0	0	-90	SRC120	100	0	-87
SRC111	100	0	-89	SRC120	200	0	-85
SRC111	200	0	-87.5	SRC120	300	0	-85.5
SRC111	244	0	-87	SRC121	0	0	-90
SRC112	0	0	-90	SRC121	100	0	-87.5
SRC112	50	0	-89	SRC121	200	0	-86.5
SRC112	100	0	-87	SRC121	300	0	-85
SRC112	150	0	-86	SRC122	0	0	-90
SRC112	200	0	-85	SRC122	100	0	-88
SRC112	250	0	-84	SRC122	200	0	-86
SRC112	300	0	-84	SRC122	300	0	-86.5
SRC113	0	0	-90	SRC123	0	0	-90
SRC113	50	0	-89	SRC123	100	0	-88
SRC113	100	0	-89	SRC123	200	0	-86
SRC113	200	0	-87.5	SRC123	300	0	-84.5
SRC113	300	0	-87	SRC124	0	0	-90
SRC114	0	0	-90	SRC124	100	0	-90
SRC114	100	0	-86	SRC124	200	0	-87
SRC114	200	0	-84	SRC124	300	0	-86
SRC115	0	0	-90	SRC125	0	0	-90
SRC115	100	0	-87	SRC125	297	0	-90
SRC115	200	0	-84.5	SRC126	0	0	-90
SRC115	300	0	-84	SRC126	100	0	-86
SRC116	0	0	-90	SRC126	200	0	-83.5
SRC116	100	0	-87	SRC126	300	0	-82
SRC116	200	0	-86	SRC128	0	0	-90
SRC116	300	0	-85.5	SRC128	100	0	-89
SRC117	0	0	-90	SRC128	200	0	-87
SRC117	100	0	-87	SRC128	290	0	-85
SRC117	240	0	-84	SRC129	0	0	-90
SRC118	0	0	-90	SRC129	100	0	-85
SRC118	100	0	-88	SRC129	200	0	-84
SRC118	200	0	-86	SRC129	300	0	-82

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC130	0	0	-90	SRC146	50	0	-90
SRC131	0	0	-90	SRC147	0	0	-90
SRC131	100	0	-87	SRC147	50	0	-90
SRC131	200	0	-85	SRC148	0	0	-90
SRC131	300	0	-85	SRC148	50	0	-90
SRC132	0	0	-90	SRC150	0	0	-90
SRC132	100	0	-86	SRC150	50	0	-90
SRC132	200	0	-84	SRC151	0	0	-90
SRC132	290	0	-84	SRC151	50	0	-90
SRC133	0	0	-90	SRC152	0	0	-90
SRC133	100	0	-89	SRC152	50	0	-90
SRC133	200	0	-88.5	SRC153	0	0	-90
SRC133	300	0	-87.7	SRC153	50	0	-90
SRC135	0	0	-90	SRC154	0	0	-90
SRC135	100	0	-88.5	SRC154	50	0	-90
SRC135	200	0	-87	SRC155	0	0	-90
SRC135	300	0	-87.5	SRC155	50	0	-90
SRC136	0	0	-90	SRC156	0	0	-90
SRC136	100	0	-89	SRC156	50	0	-90
SRC136	280	0	-87	SRC157	0	0	-90
SRC137	0	0	-90	SRC157	50	0	-90
SRC137	246	0	-90	SRC158	0	0	-90
SRC138	0	0	-90	SRC158	50	0	-90
SRC138	100	0	-87.5	SRC159	0	0	-90
SRC138	240	0	-86.75	SRC159	50	0	-90
SRC139	0	0	-90	SRC160	0	0	-90
SRC139	100	0	-88	SRC160	50	0	-90
SRC139	240	0	-86	SRC161	0	0	-90
SRC140	0	0	-90	SRC161	50	0	-90
SRC140	50	0	-90	SRC162	0	0	-90
SRC141	0	0	-90	SRC162	50	0	-90
SRC141	50	0	-90	SRC163	0	0	-90
SRC143	0	0	-90	SRC163	50	0	-90
SRC143	50	0	-90	SRC164	0	0	-90
SRC144	0	0	-90	SRC164	50	0	-90
SRC144	50	0	-90	SRC165	0	0	-90
SRC145	0	0	-90	SRC165	50	0	-90
SRC145	50	0	-90	SRC166	0	0	-90
SRC146	0	0	-90	SRC166	50	0	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC167	0	0	-90	SRC186	50	0	-90
SRC167	50	0	-90	SRC187	0	0	-90
SRC168	0	0	-90	SRC187	50	0	-90
SRC168	50	0	-90	SRC188	0	0	-90
SRC169	0	0	-90	SRC188	50	0	-90
SRC169	50	0	-90	SRC189	0	0	-90
SRC170	0	0	-90	SRC189	50	0	-90
SRC170	50	0	-90	SRC190	0	0	-90
SRC171	0	0	-90	SRC190	50	0	-90
SRC171	50	0	-90	SRC191	0	0	-90
SRC172	0	0	-90	SRC191	50	0	-90
SRC172	50	0	-90	SRC192	0	0	-90
SRC173	0	0	-90	SRC192	50	0	-90
SRC173	50	0	-90	SRC193	0	0	-90
SRC174	0	0	-90	SRC193	50	0	-90
SRC174	50	0	-90	SRC194	0	0	-90
SRC175	0	0	-90	SRC194	50	0	-90
SRC175	50	0	-90	SRC195	0	0	-90
SRC176	0	0	-90	SRC195	50	0	-90
SRC176	50	0	-90	SRC196	0	0	-90
SRC177	0	0	-90	SRC196	50	0	-90
SRC177	50	0	-90	SRC197	0	0	-90
SRC178	0	0	-90	SRC197	50	0	-90
SRC178	50	0	-90	SRC198	0	0	-90
SRC179	0	0	-90	SRC198	50	0	-90
SRC179	50	0	-90	SRC199	0	0	-90
SRC180	0	0	-90	SRC199	50	0	-90
SRC180	50	0	-90	SRC200	0	0	-90
SRC181	0	0	-90	SRC200	50	0	-90
SRC181	50	0	-90	SRC201	0	0	-90
SRC182	0	0	-90	SRC201	50	0	-90
SRC182	50	0	-90	SRC202	0	0	-90
SRC183	0	0	-90	SRC202	50	0	-90
SRC183	50	0	-90	SRC203	0	0	-90
SRC184	0	0	-90	SRC203	50	0	-90
SRC184	50	0	-90	SRC204	0	0	-90
SRC185	0	0	-90	SRC204	50	0	-90
SRC185	50	0	-90	SRC205	0	270	-58.9
SRC186	0	0	-90	SRC205	60	270	-54.4

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRC205	120	270	-51	SRCD127	626.8	195	-85
SRC205	150	270	-51	SRCD134	0	0	-90
SRC206	0	270	-60.2	SRCD134	100	0	-87.5
SRC206	60	270	-57.9	SRCD134	200	0	-88
SRC206	120	270	-56.7	SRCD134	300	0	-87.5
SRC206	150	270	-55.9	SRCD134	315.3	346	-86
SRC207	0	270	-59.2	SRCD134	369.3	312	-87
SRC207	60	270	-54.9	SRCD134	441.3	351	-86
SRC207	120	270	-52.2	SRCD134	501.2	348	-85
SRC207	150	270	-51	SRCD142	0	0	-90
SRC208	0	90	-59.3	SRCD142	50	0	-90
SRC208	60	90	-53.8	SRCD142	204.3	70	-85
SRC208	120	90	-51.5	SRCD142	261.3	75	-84.5
SRC209	0	90	-60.3	SRCD142	324.3	80	-84
SRC209	60	90	-56.7	SRCD142	384.3	83	-84
SRC209	120	90	-56.8	SRCD142	441.3	89	-85
SRC209	150	90	-57.2	SRCD142	501.3	86	-85
SRC210	0	0	-89.2	SRCD149	0	0	-90
SRC210	60	0	-87.9	SRCD149	50	0	-90
SRC210	120	0	-87.1	SRCD149	306.1	360	-90
SRC210	150	0	-86.2	SRD050	0	290.84	-89.84
SRCD084	0	0	-90	SRD050	10	50.06	-89.21
SRCD084	50	0	-90	SRD050	20	35.11	-88.4
SRCD084	54.3	339	-88	SRD050	30	26.98	-88.23
SRCD084	99.3	329	-87	SRD050	40	24.08	-88.04
SRCD084	153.3	321	-87	SRD050	50	24.2	-87.9
SRCD084	201.3	327	-87	SRD050	60	25.87	-87.78
SRCD084	249.3	332	-87	SRD050	70	24.61	-87.56
SRCD084	303.3	344	-87	SRD050	80	28.84	-87.59
SRCD084	363.3	357	-87	SRD050	90	25.63	-87.55
SRCD127	0	180	-90	SRD050	100	26.05	-87.5
SRCD127	100	180	-88	SRD050	110	26.88	-87.48
SRCD127	200	180	-87	SRD050	120	35.69	-87.37
SRCD127	290	180	-86	SRD050	130	36.31	-87.39
SRCD127	315.2	178	-85	SRD050	140	35	-87.4
SRCD127	381.2	185	-85	SRD050	150	33.47	-87.32
SRCD127	456.2	189	-85.5	SRD050	160	34.31	-87.38
SRCD127	525.2	190	-85	SRD050	170	32.91	-87.38
SRCD127	591.2	193	-85	SRD050	180	32.36	-87.34

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD050	190	32.32	-87.28	SRD051	250	220	-87
SRD050	200	32.58	-87.28	SRD051	300	227	-87.5
SRD050	210	31.9	-87.27	SRD051	350	207	-87.5
SRD050	220	31.46	-87.25	SRD051	400	225	-87
SRD050	230	31.49	-87.21	SRD051	450.2	215	-87
SRD050	240	31.55	-87.18	SRD052	0	89.43	-89.58
SRD050	250	31.34	-87.21	SRD052	10	26.89	-89.52
SRD050	260	31.67	-87.22	SRD052	20	184.38	-89.78
SRD050	270	32.71	-87.21	SRD052	30	108.15	-89.53
SRD050	280	33.5	-87.24	SRD052	40	162.11	-88.98
SRD050	290	32.52	-87.23	SRD052	50	145	-88.43
SRD050	300	32.58	-87.24	SRD052	53	179.74	-88.92
SRD050	310	32.31	-87.24	SRD052	99	140	-88.8
SRD050	320	33.74	-87.24	SRD052	150	150	-88.7
SRD050	330	33.63	-87.28	SRD052	201	148	-88.8
SRD050	340	34.45	-87.21	SRD052	250	150	-88.5
SRD050	350	35.06	-87.27	SRD052	300	170	-88.5
SRD050	360	36.13	-87.31	SRD052	350	154	-88.5
SRD050	370	36.09	-87.3	SRD052	399	180	-88.3
SRD050	380	37.45	-87.27	SRD052	445	140	-88.2
SRD050	390	38.36	-87.33	SRD053	0	238.33	-89.16
SRD050	400	37.53	-87.29	SRD053	10	210.63	-89.42
SRD050	410	36.87	-87.32	SRD053	20	223.63	-89.58
SRD050	420	36.89	-87.36	SRD053	30	225.99	-89.64
SRD050	430	36.21	-87.37	SRD053	40	282.13	-89.09
SRD050	440	36.86	-87.33	SRD053	50	228.56	-89.23
SRD050	450	35.47	-87.35	SRD053	60	251.25	-88.85
SRD050	453	33.72	-87.1	SRD053	70	234.9	-89.13
SRD051	0	260.27	-89.13	SRD053	80	232.36	-89.05
SRD051	10	243.2	-88.77	SRD053	90	231.91	-89.09
SRD051	20	226.79	-88.49	SRD053	100	233.48	-89.06
SRD051	30	344.31	-88.53	SRD053	110	231.92	-89.03
SRD051	40	263.84	-88.15	SRD053	120	234.25	-89.07
SRD051	50	245.59	-87.77	SRD053	130	235.9	-89.16
SRD051	60	187.86	-87.69	SRD053	140	237.19	-89.16
SRD051	70	319.15	-87.43	SRD053	150	239.48	-89.16
SRD051	100	220	-87.4	SRD053	160	237.56	-89.26
SRD051	150	215	-87	SRD053	170	238.27	-89.3
SRD051	200	210	-87	SRD053	180	242.17	-89.25

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD053	190	242.61	-89.25	SRD054	22	271.15	-89.28
SRD053	200	244.49	-89.25	SRD055	0	343.07	-89.5
SRD053	210	245.71	-89.26	SRD055	10	352.98	-89.25
SRD053	220	246.34	-89.26	SRD055	20	9.57	-88.98
SRD053	230	249.17	-89.21	SRD055	30	6.3	-88.83
SRD053	240	249	-89.2	SRD055	40	11.87	-88.66
SRD053	250	248.54	-89.2	SRD055	50	22.32	-88.84
SRD053	260	247.99	-89.15	SRD055	60	18.98	-88.75
SRD053	270	250.74	-89.12	SRD055	70	20.03	-88.78
SRD053	280	251.3	-89.16	SRD055	80	20.96	-88.81
SRD053	290	251.22	-89.21	SRD055	90	17.43	-88.75
SRD053	300	253.61	-89.17	SRD055	100	16.59	-88.76
SRD053	310	256.64	-89.17	SRD055	110	15.51	-88.78
SRD053	320	258.3	-89.19	SRD055	112	18.28	-88.82
SRD053	330	259.66	-89.17	SRD055	150	20	-89.8
SRD053	340	262.99	-89.12	SRD055	201	25	-89.6
SRD053	350	261.51	-89.14	SRD055	249	30	-88
SRD053	360	264.23	-89.12	SRD055	300	30	-88.5
SRD053	370	263.91	-89.08	SRD055	350	38	-88.2
SRD053	380	264.66	-89.07	SRD055	403	38	-88
SRD053	390	264.59	-89.03	SRD056	0	135.06	-89.4
SRD053	400	266.35	-89.02	SRD056	10	119.74	-89.15
SRD053	410	266.3	-88.98	SRD056	20	120.59	-89.21
SRD053	420	266.63	-88.98	SRD056	30	129.29	-89.56
SRD053	430	267.07	-88.98	SRD056	40	117.32	-89.42
SRD053	440	267.83	-88.98	SRD056	50	13.8	-89.58
SRD053	450	266.4	-88.98	SRD056	60	4.01	-89.6
SRD053	460	268.12	-88.98	SRD056	70	0.09	-89.58
SRD053	470	268.43	-88.93	SRD056	80	357.59	-89.58
SRD053	480	268.19	-88.93	SRD056	90	89.01	-89.51
SRD053	490	266.76	-88.98	SRD056	100	116.53	-89.55
SRD053	497	278.1	-88.74	SRD056	110	112.91	-89.57
SRD053	510	161	-88	SRD056	120	115.08	-89.58
SRD053	580	250	-90	SRD056	130	129.86	-89.69
SRD053	624.2	332	-88	SRD056	140	229.76	-89.86
SRD053	684.2	266	-88	SRD056	150	317.8	-89.63
SRD054	0	243.93	-89.67	SRD056	160	300.85	-89.59
SRD054	10	271.94	-89.31	SRD056	170	300.18	-89.58
SRD054	20	271.64	-89.24	SRD056	180	15.91	-89.56

DRILL	HOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD05	6	190	348.88	-89.56	SRD057a	90	337.33	-89.14
SRD05	6	200	44.97	-89.6	SRD057a	100	337.59	-89.23
SRD05	6	210	59.1	-89.59	SRD057a	110	342.24	-89.17
SRD05	6	220	81.32	-89.64	SRD057a	120	342.6	-89.13
SRD05	6	230	89.17	-89.64	SRD057a	130	344.19	-89.04
SRD05	6	240	111.27	-89.62	SRD057a	140	350.27	-89.03
SRD05	6	250	120.7	-89.59	SRD057a	150	346.17	-89.03
SRD05	6	260	359.78	-89.6	SRD057a	160	346.89	-88.98
SRD05	6	270	243.16	-89	SRD057a	170	347.65	-89.1
SRD05	6	280	227.8	-88.82	SRD057a	180	347.03	-89.09
SRD05	6	290	228.54	-88.76	SRD057a	190	350.01	-89.03
SRD05	6	300	226.05	-88.73	SRD057a	200	342.8	-89.03
SRD05	6	310	227.42	-88.76	SRD057a	210	345.04	-89.07
SRD05	6	320	224.61	-88.74	SRD057a	220	347.28	-89.08
SRD05	6	330	225.72	-88.76	SRD057a	230	349.39	-89.12
SRD05	6	340	222.69	-88.76	SRD057a	240	353.33	-89.11
SRD05	6	350	225.17	-88.79	SRD057a	250	351.97	-89.16
SRD05	6	360	221.25	-88.81	SRD057a	260	348.97	-89.22
SRD05	6	370	221.81	-88.76	SRD057a	270	335.86	-89.24
SRD05	6	380	222.78	-88.51	SRD057a	280	348.55	-89.24
SRD05	6	390	221.78	-88.59	SRD057a	290	352.66	-89.32
SRD05	6	400	221.04	-88.55	SRD057a	300	351.6	-89.3
SRD05	6	410	223.28	-88.53	SRD057a	310	346.55	-89.25
SRD05	6	420	223.24	-88.55	SRD057a	320	348.8	-89.2
SRD05	6	430	224.09	-88.55	SRD057a	330	352.96	-89.23
SRD05	6	440	224.57	-88.51	SRD057a	340	351.71	-89.32
SRD05	6	450	222.99	-88.5	SRD057a	350	349.54	-89.34
SRD05	6	460	224.67	-88.55	SRD057a	360	345.18	-89.32
SRD05	6	468	225.48	-88.23	SRD057a	370	346.31	-89.29
SRD05	7	0	0	-90	SRD057a	380	345.08	-89.36
SRD05	7a	0	356.95	-88.84	SRD057a	390	345.76	-89.33
SRD05	7a	10	354.47	-89.04	SRD057a	400	342.87	-89.34
SRD05	7a	20	345.75	-89.01	SRD057a	410	348.96	-89.29
SRD05	7a	30	347.01	-89.04	SRD057a	420	350.19	-89.3
SRD05	7a	40	339.83	-89.08	SRD057a	430	350.06	-89.32
SRD05	7a	50	336.96	-89.02	SRD057a	440	356.65	-89.26
SRD05	7a	60	335.16	-89.01	SRD057a	442	357.8	-89.25
SRD05	7a	70	336.6	-89.01	SRD058	0	56.98	-89.76
SRD05	7a	80	332.24	-88.97	SRD058	10	43.79	-89.87

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD058	20	153.92	-89.68	SRD060	40	195.85	-89.23
SRD058	30	158.79	-88.76	SRD060	50	200.26	-89.24
SRD058	40	164.21	-87.62	SRD060	60	208.07	-89.2
SRD058	50	166.69	-87.46	SRD060	70	154.6	-89.32
SRD058	60	165.05	-87.41	SRD060	80	154.02	-89.15
SRD058	70	168.06	-87.4	SRD060	90	156.87	-89.14
SRD058	80	170.78	-87.43	SRD060	100	155.93	-89.01
SRD058	90	165.75	-87.39	SRD060	110	154.55	-89.06
SRD058	100	163.33	-87.42	SRD060	120	154.35	-89.1
SRD058	110	166.56	-87.43	SRD060	130	154.24	-89.11
SRD058	120	165.62	-87.34	SRD060	140	150.78	-89.14
SRD058	150	168	-87.4	SRD060	150	148.4	-89.15
SRD058	201	175	-87.8	SRD060	160	144.95	-89.15
SRD058	252	182	-87.5	SRD060	170	147.2	-89.08
SRD058	305	165	-87.5	SRD060	171	151.2	-89.02
SRD058	350	175	-87.3	SRD060	200	140	-89
SRD058	400	167	-87.3	SRD060	250	145	-89.1
SRD058	445.2	165	-87.1	SRD060	300	145	-88.9
SRD059	0	214.04	-89.59	SRD060	350	145	-88.9
SRD059	5	227.5	-89.69	SRD060	399	134	-89.1
SRD059	10	240.17	-89.38	SRD060	450	155	-89
SRD059	20	192.57	-88.71	SRD060	480.3	254	-90
SRD059	30	189.08	-88.83	SRD060	540.2	151	-88.5
SRD059	40	191.19	-88.58	SRD060	600.3	201	-88.5
SRD059	50	188.9	-88.9	SRD060	630.3	200	-88
SRD059	60	188.46	-88.69	SRD061	0	360	-90
SRD059	66	169	-89	SRD061	167.9	32	-89.2
SRD059	100	180	-89	SRD061	215.9	5	-89.2
SRD059	150	185	-88.5	SRD061	263.9	335	-89.4
SRD059	200	190	-89	SRD061	311.9	100	-89.8
SRD059	250	199	-89	SRD061	359.9	15	-89.1
SRD059	300	217	-89	SRD061	407	65	-89
SRD059	351	201	-89	SRD061	456	62	-88.7
SRD059	402	229	-89	SRD062	0	360	-90
SRD059	450	214	-89	SRD062	100	90	-89.9
SRD060	0	303.76	-89.53	SRD062	150	60	-88.8
SRD060	10	270.47	-89.57	SRD062	200	40	-89.2
SRD060	20	186.12	-89.16	SRD062	250	75	-89
SRD060	30	199.59	-89.37	SRD062	300	65	-88.9

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD062	350	65	-88.5	SRD063	360	271.55	-57.55
SRD062	400	70	-88.5	SRD063	370	271.29	-57.44
SRD062	450	65	-88.9	SRD063	380	271.65	-57.55
SRD063	0	268.09	-60.52	SRD063	390	271.91	-57.53
SRD063	10	268.76	-60.37	SRD063	400	271.79	-57.49
SRD063	20	269.39	-59.76	SRD063	410	272.06	-57.54
SRD063	30	269.28	-59.03	SRD063	420	272.1	-57.48
SRD063	40	268.56	-58.19	SRD063	430	272.18	-57.48
SRD063	50	269.92	-57.46	SRD063	440	272.31	-57.49
SRD063	60	267.92	-57.16	SRD063	450	272.59	-57.48
SRD063	70	268.74	-57.4	SRD064	0	92.11	-60.57
SRD063	80	268.92	-57.3	SRD064	10	91.31	-60.55
SRD063	90	268.9	-57.42	SRD064	20	91.95	-60.09
SRD063	100	268.77	-57.48	SRD064	30	92.49	-60.29
SRD063	110	269.44	-57.54	SRD064	40	92.85	-60.06
SRD063	120	268.55	-57.39	SRD064	50	93.94	-60.54
SRD063	130	271.18	-57.34	SRD064	60	93.48	-60.17
SRD063	140	269.03	-57.3	SRD064	70	93.69	-60.34
SRD063	150	269.12	-57.41	SRD064	80	93.74	-60.29
SRD063	160	268.72	-57.54	SRD064	90	93.69	-60.3
SRD063	170	268.89	-57.55	SRD064	100	93.89	-60.25
SRD063	180	268.76	-57.52	SRD064	110	93.78	-60.25
SRD063	190	266.03	-57.69	SRD064	120	94	-60.2
SRD063	200	264.42	-57.65	SRD064	130	94.14	-60.15
SRD063	210	269.52	-57.63	SRD064	140	94.17	-60.15
SRD063	220	269.54	-57.74	SRD064	150	94.25	-60.13
SRD063	230	269.53	-57.76	SRD064	160	94.61	-60.03
SRD063	240	269.38	-57.77	SRD064	170	94.28	-59.94
SRD063	250	269.61	-57.77	SRD064	180	94.19	-59.96
SRD063	260	269.7	-57.72	SRD064	190	94.69	-59.89
SRD063	270	269.52	-57.74	SRD064	191	94.51	-59.91
SRD063	280	269.15	-57.65	SRD064	201	98	-60
SRD063	290	270.39	-57.62	SRD064	250	98	-59
SRD063	300	270.56	-57.7	SRD064	300	99	-59.2
SRD063	310	270.35	-57.73	SRD064	351	99	-59
SRD063	320	270.85	-57.63	SRD064	399	101	-59
SRD063	330	270.18	-57.57	SRD064	450	101	-59
SRD063	340	270.73	-57.51	SRD064	500	102	-59
SRD063	350	271.42	-57.48	SRD065	0	153.19	-89.38

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD065	10	125.55	-89.44	SRD066	250	211.71	-58.58
SRD065	14	91.63	-89.48	SRD066	260	211.67	-58.46
SRD065	66	105	-88.5	SRD066	270	211.67	-58.25
SRD065	100	120	-88.5	SRD066	280	211.81	-58.27
SRD065	150	95	-88.3	SRD066	290	211.95	-58.26
SRD065	201	120	-89	SRD066	300	211.94	-58.27
SRD065	249	87	-88.2	SRD066	310	212.1	-58.2
SRD065	300	95	-89	SRD066	320	212.26	-58.17
SRD065	351	72	-89	SRD066	330	212.43	-58.22
SRD065	399	110	-88	SRD066	340	212.42	-58.22
SRD065	450	110	-88	SRD066	350	212.65	-58.21
SRD065	492	110	-88.9	SRD066	360	212.77	-58.16
SRD065	504.4	103	-89	SRD066	370	212.86	-58.13
SRD065	567.4	88	-89	SRD066	380	212.89	-58.11
SRD065	615.4	110	-90	SRD066	390	213.18	-58.04
SRD066	0	212.61	-60.29	SRD066	400	213.06	-58.03
SRD066	20	212.27	-60.24	SRD066	410	212.95	-58.12
SRD066	30	211.46	-59.8	SRD066	420	213.01	-58.12
SRD066	40	211.21	-59.32	SRD066	430	213.19	-58.04
SRD066	50	215.88	-59.14	SRD066	440	212.56	-58.05
SRD066	60	210.91	-59.16	SRD066	450	213.28	-58.05
SRD066	70	210.53	-58.85	SRD066	460	213.57	-58.04
SRD066	80	210.32	-59.09	SRD066	470	213.36	-58
SRD066	90	210.26	-59.03	SRD066	480	213.64	-57.98
SRD066	100	210.68	-58.9	SRD066	490	213.83	-57.95
SRD066	110	210.79	-58.97	SRD066	500	213.76	-57.94
SRD066	120	210.9	-58.92	SRD067	0	162.31	-89.84
SRD066	130	210.71	-58.83	SRD067	10	169.21	-89.9
SRD066	140	210.66	-58.72	SRD067	20	273.31	-89.84
SRD066	150	210.85	-58.73	SRD067	30	9.89	-89.82
SRD066	160	210.84	-58.74	SRD067	40	232.68	-89.81
SRD066	170	211	-58.67	SRD067	50	162.78	-89.51
SRD066	180	211.13	-58.6	SRD067	60	140.53	-89.21
SRD066	190	211.23	-58.54	SRD067	70	129.78	-88.91
SRD066	200	211.35	-58.58	SRD067	80	119.15	-89.08
SRD066	210	211.47	-58.57	SRD067	90	137.49	-88.89
SRD066	220	211.58	-58.54	SRD067	100	138.68	-88.77
SRD066	230	211.67	-58.52	SRD067	110	132.4	-88.74
SRD066	240	211.74	-58.51	SRD067	120	133.46	-88.63

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD067	130	131.52	-88.81	SRD068	20	88.25	-89.65
SRD067	140	138.56	-88.83	SRD068	30	137.04	-89.5
SRD067	150	142.18	-88.82	SRD068	32	130.63	-89.53
SRD067	160	144.2	-88.74	SRD068	67	158	-89
SRD067	170	137.77	-88.7	SRD068	100	155	-88.2
SRD067	180	136.58	-88.66	SRD068	150	145	-88.2
SRD067	190	132.55	-88.66	SRD068	201	159	-88
SRD067	200	134.03	-88.61	SRD068	250	160	-88
SRD067	210	133.74	-88.65	SRD068	300	165	-89
SRD067	220	135.35	-88.64	SRD068	351	165	-87
SRD067	230	133.91	-88.72	SRD068	399	240	-85
SRD067	240	132.72	-88.7	SRD068	450	155	-84
SRD067	250	131.25	-88.74	SRD068	462.3	164	-88
SRD067	260	129.39	-88.77	SRD068	513.3	157	-87
SRD067	270	130.08	-88.74	SRD068	588.3	169	-87
SRD067	280	130.69	-88.74	SRD068	624.3	141	-88
SRD067	290	130.58	-88.72	SRD069	0	201.68	-89.78
SRD067	300	128.71	-88.74	SRD069	10	217.75	-89.72
SRD067	310	130.68	-88.7	SRD069	20	236.24	-89.92
SRD067	320	130.64	-88.7	SRD069	30	241.63	-89.73
SRD067	330	135.42	-88.76	SRD069	40	210.72	-89.26
SRD067	340	137.13	-88.77	SRD069	50	195.44	-88.6
SRD067	350	138.2	-88.77	SRD069	60	194.51	-88.44
SRD067	360	140.74	-88.75	SRD069	70	192.69	-88.2
SRD067	370	146.59	-88.73	SRD069	80	194.41	-88.22
SRD067	380	141.52	-88.69	SRD069	90	194.79	-88.23
SRD067	390	141.87	-88.69	SRD069	100	197	-88.34
SRD067	400	133.02	-88.74	SRD069	110	198.19	-88.37
SRD067	410	136.24	-88.71	SRD069	120	193.06	-88.28
SRD067	420	138.68	-88.72	SRD069	130	192.6	-88.29
SRD067	430	137.64	-88.7	SRD069	140	192.32	-88.22
SRD067	440	133.87	-88.69	SRD069	150	190.8	-88.25
SRD067	449.5	145.04	-88.41	SRD069	160	191.87	-88.28
SRD067	459.4	139	-89	SRD069	170	192.63	-88.28
SRD067	522.4	146	-89	SRD069	180	192.21	-88.24
SRD067	582.4	148	-89	SRD069	190	192.95	-88.26
SRD067	648.4	154	-89	SRD069	200	190.46	-88.19
SRD068	0	44.23	-89.48	SRD069	210	190.1	-88.15
SRD068	10	47.93	-89.61	SRD069	220	188.9	-88.15

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD069	230	187.83	-88.14	SRD070	120	72.82	-88.62
SRD069	240	187.58	-88.2	SRD070	123	75.01	-88.29
SRD069	250	185.13	-88.16	SRD070	150	78.7	-88.8
SRD069	260	187.04	-88.16	SRD070	202	74.2	-88.7
SRD069	270	186.81	-88.16	SRD070	250	86.8	-88.8
SRD069	280	186.63	-88.16	SRD070	300	88.5	-88.5
SRD069	290	186.48	-88.16	SRD070	350	88.7	-88.6
SRD069	300	185.78	-88.16	SRD070	400	89.4	-88.4
SRD069	310	186.51	-88.17	SRD070	450	102.2	-88.5
SRD069	320	185.85	-88.22	SRD070	462.5	90	-89
SRD069	330	185.96	-88.24	SRD070	525.5	90	-89
SRD069	340	186.13	-88.29	SRD070	585.5	217	-89
SRD069	350	185.46	-88.22	SRD070	645.5	101	-89
SRD069	360	188.3	-88.24	SRD070	705.5	132	-89
SRD069	370	187.59	-88.26	SRD070	741.5	234	-89
SRD069	380	186.68	-88.3	SRD071	0	68.84	-89.42
SRD069	390	189.15	-88.33	SRD071	10	291.89	-89.29
SRD069	400	191.91	-88.38	SRD071	20	130	-89.49
SRD069	410	186.97	-88.36	SRD071	30	246.87	-89.48
SRD069	420	192.47	-88.37	SRD071	40	140.32	-89.09
SRD069	425	196.11	-88.63	SRD071	50	195.7	-88.97
SRD069	430	192.43	-88.34	SRD071	60	180.36	-88.23
SRD069	440	190.45	-88.37	SRD071	70	192.63	-88.94
SRD069	442	194.14	-88.4	SRD071	80	189.06	-88.95
SRD069	510.1	194	-87	SRD071	90	192.19	-88.97
SRD069	570.1	199	-88	SRD071	100	192.93	-89.02
SRD069	651.1	222	-88	SRD071	110	192.72	-89.03
SRD070	0	229.08	-89.84	SRD071	120	192.93	-88.96
SRD070	10	186.44	-89.47	SRD071	151	182.2	-89.1
SRD070	20	167.14	-89.14	SRD071	200	158.6	-88.8
SRD070	30	177.77	-89.53	SRD071	250	161.3	-88.6
SRD070	40	115.14	-89.21	SRD071	300	153.4	-88.3
SRD070	50	79.62	-89.06	SRD071	350	150.1	-88.5
SRD070	60	78.47	-88.72	SRD071	400	170.1	-88.5
SRD070	70	69.28	-88.67	SRD071	450	171	-88.1
SRD070	80	65.71	-88.68	SRD072	0	27.89	-88.78
SRD070	90	73.84	-88.69	SRD072	10	21.98	-88.83
SRD070	100	65.2	-88.62	SRD072	20	22.7	-88.91
SRD070	110	66.24	-88.67	SRD072	30	32.23	-88.74

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD072	40	35.48	-88.62	SRD074	360	179.41	-86.91
SRD072	50	36.16	-88.6	SRD074	370	181.61	-86.83
SRD072	59	39.05	-88.64	SRD074	380	180.29	-86.78
SRD073	0	0	-90	SRD074	390	180.42	-86.73
SRD074	0	256.42	-89.17	SRD074	400	180.43	-86.71
SRD074	10	257.91	-89.01	SRD074	410	180.57	-86.64
SRD074	20	247.33	-89.32	SRD074	420	180.66	-86.54
SRD074	30	227.14	-89.35	SRD074	430	181.27	-86.52
SRD074	40	219.76	-88.9	SRD074	440	181.34	-86.5
SRD074	50	189.67	-88.83	SRD075	0	0	-89.76
SRD074	60	188.4	-88.51	SRD075	10	106.56	-89.8
SRD074	70	193.95	-88.53	SRD075	20	61.07	-89.31
SRD074	80	186.04	-88.49	SRD075	30	28.45	-88.79
SRD074	90	193.53	-88.45	SRD075	40	17.16	-89.18
SRD074	100	190.25	-88.25	SRD075	50	13.05	-89.48
SRD074	110	184.72	-88.17	SRD075	60	14.6	-88.72
SRD074	120	189.06	-88.17	SRD075	70	18.99	-89.02
SRD074	130	185.2	-88.16	SRD075	80	24.11	-88.88
SRD074	140	187.37	-88.14	SRD075	90	28.58	-88.92
SRD074	150	189.55	-88.09	SRD075	100	31.86	-88.97
SRD074	160	184.87	-87.99	SRD075	110	33.88	-89.01
SRD074	170	185.42	-87.95	SRD075	120	35.17	-89.02
SRD074	180	184.86	-88.01	SRD075	130	36.18	-89.12
SRD074	190	184.16	-87.96	SRD075	140	37.2	-89.16
SRD074	200	184.04	-87.9	SRD075	150	38.22	-89.14
SRD074	220	188.03	-87.83	SRD075	160	39.49	-89.09
SRD074	230	184.91	-87.7	SRD075	170	40.98	-89.11
SRD074	240	184.89	-87.64	SRD075	180	42.4	-89.05
SRD074	250	189.46	-87.63	SRD075	190	43.85	-88.98
SRD074	260	184.25	-87.58	SRD075	200	45.25	-88.92
SRD074	270	183.7	-87.49	SRD075	210	46.59	-88.93
SRD074	280	183.15	-87.41	SRD075	220	47.96	-88.92
SRD074	290	183.45	-87.35	SRD075	230	49.42	-88.89
SRD074	300	182.57	-87.29	SRD075	240	50.9	-88.84
SRD074	310	182.51	-87.25	SRD075	250	52.36	-88.8
SRD074	320	180.97	-87.16	SRD075	260	53.65	-88.74
SRD074	330	180.8	-87.11	SRD075	270	54.77	-88.69
SRD074	340	180.39	-87.05	SRD075	280	55.79	-88.7
SRD074	350	179.92	-87	SRD075	290	56.7	-88.67

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD075	300	57.63	-88.61	SRD076	230	161.74	-88.43
SRD075	310	58.6	-88.61	SRD076	240	163.16	-88.32
SRD075	320	59.69	-88.65	SRD076	250	161.91	-88.29
SRD075	330	60.87	-88.64	SRD076	260	162.2	-88.24
SRD075	340	62.05	-88.63	SRD076	270	164.36	-88.11
SRD075	350	63.19	-88.59	SRD076	280	165.64	-88.04
SRD075	360	64.23	-88.56	SRD076	290	165.67	-88.03
SRD075	370	65.11	-88.63	SRD076	300	165.85	-87.95
SRD075	380	65.86	-88.6	SRD076	310	167.3	-87.92
SRD075	390	66.57	-88.57	SRD076	320	165.95	-87.92
SRD075	400	67.35	-88.59	SRD076	330	166.68	-87.95
SRD075	410	68.27	-88.61	SRD076	340	165.97	-87.97
SRD075	420	69.13	-88.64	SRD076	350	168.17	-87.94
SRD075	430	69.88	-88.6	SRD076	360	168.66	-87.94
SRD075	440	70.63	-88.5	SRD076	370	169.96	-88.03
SRD075	450	71.43	-88.42	SRD076	380	167.69	-88.06
SRD076	0	236.36	-89.18	SRD076	390	169.76	-88.16
SRD076	10	193.59	-89.14	SRD076	400	174.37	-88.27
SRD076	20	185.28	-89.09	SRD076	410	181.8	-88.1
SRD076	30	146.22	-89.17	SRD076	412	178.03	-87.9
SRD076	40	180.38	-88.78	SRD077	0	82.92	-89.5
SRD076	50	109.03	-89.19	SRD077	10	344.18	-89.78
SRD076	60	136.34	-88.92	SRD077	20	246.9	-88.59
SRD076	70	128.02	-89.25	SRD077	30	232.32	-88.64
SRD076	80	132.16	-89.22	SRD077	40	255.81	-88.73
SRD076	90	134.63	-89.16	SRD077	50	249.19	-88.71
SRD076	100	138.5	-89.15	SRD077	60	239.04	-88.32
SRD076	110	139.23	-89.09	SRD077	69	215	-88.2
SRD076	120	140.13	-89.08	SRD077	100	240	-88.5
SRD076	130	143.8	-89.03	SRD077	150	240	-88.5
SRD076	140	144.37	-88.99	SRD077	200	225	-88.2
SRD076	150	143.76	-89.01	SRD077	250	220	-88.1
SRD076	160	145.27	-89.05	SRD077	300	230	-88
SRD076	170	150.99	-89.01	SRD077	350	230	-88.2
SRD076	180	155.36	-88.71	SRD077	400	230	-88.2
SRD076	190	155.94	-88.55	SRD077	449	240	-88.2
SRD076	200	156.93	-88.47	SRD077	477	240	-88.1
SRD076	210	157.14	-88.45	SRD078	0	124.02	-89.53
SRD076	220	159.96	-88.48	SRD078	10	145.33	-89.69

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD078	20	117.96	-89.36	SRD078	410	136.54	-89.13
SRD078	30	113.26	-89.37	SRD078	420	133.87	-89.11
SRD078	40	91.64	-88.91	SRD078	430	135.93	-89.11
SRD078	50	80	-88.78	SRD078	440	135.63	-89.1
SRD078	60	77.97	-88.16	SRD078	449	142.33	-88.82
SRD078	70	82.5	-88.55	SRD079	0	114.12	-89.59
SRD078	80	82.55	-88.51	SRD079	10	124.19	-89.51
SRD078	90	84.04	-88.57	SRD079	20	134.65	-87.91
SRD078	100	84.76	-88.58	SRD079	30	137.45	-87.67
SRD078	110	92.82	-88.62	SRD079	31	136.64	-87.92
SRD078	120	88.6	-88.68	SRD079	66	125	-88.3
SRD078	130	87.14	-88.72	SRD079	99	140	-88.3
SRD078	140	87.91	-88.84	SRD079	150	155	-88
SRD078	150	93.7	-88.8	SRD079	200	135	-88
SRD078	160	97.19	-88.78	SRD079	250	145	-87.7
SRD078	170	87.95	-88.87	SRD079	300	156	-87.9
SRD078	180	96.2	-89.04	SRD079	350	150	-87.2
SRD078	190	102.11	-89.06	SRD079	400	152	-87.4
SRD078	200	98.28	-89.03	SRD079	450	166	-87
SRD078	210	100.19	-89.2	SRD079	474.4	168	-87.8
SRD078	220	107.92	-89.23	SRD080	0	17.72	-89.47
SRD078	230	109.63	-89.29	SRD080	10	54.88	-89.3
SRD078	240	113.15	-89.31	SRD080	20	15.12	-89.32
SRD078	250	119.76	-89.28	SRD080	30	323.29	-89.49
SRD078	260	111.64	-89.34	SRD080	40	324.15	-89.42
SRD078	270	113.16	-89.31	SRD080	50	321.53	-89.52
SRD078	280	118.99	-89.2	SRD080	60	332.27	-89.36
SRD078	290	132.78	-89.11	SRD080	70	34.11	-89.47
SRD078	300	131.63	-89.2	SRD080	80	33.42	-89.49
SRD078	310	138.87	-89.12	SRD080	90	32.07	-89.46
SRD078	320	130.95	-89.13	SRD080	100	325.04	-89.58
SRD078	330	138.81	-89.11	SRD080	110	320.2	-89.53
SRD078	340	132.83	-89.15	SRD080	120	322.92	-89.54
SRD078	350	132.06	-89.1	SRD080	130	322.8	-89.48
SRD078	360	135.44	-89.16	SRD080	140	328.29	-89.42
SRD078	370	135.01	-89.16	SRD080	150	328.96	-89.42
SRD078	380	132.39	-89.16	SRD080	160	329.55	-89.43
SRD078	390	133.17	-89.18	SRD080	170	328.94	-89.47
SRD078	400	138.3	-89.1	SRD080	180	331.81	-89.44

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD080	190	328.64	-89.51	SRD081	220	1.02	-52.44
SRD080	200	327.42	-89.53	SRD081	230	0.79	-52.56
SRD080	210	334.32	-89.43	SRD081	240	0.81	-52.51
SRD080	220	341.05	-89.41	SRD081	250	0.53	-52.59
SRD080	230	329.96	-89.39	SRD081	260	0.44	-52.47
SRD080	240	340.89	-89.38	SRD081	270	0.56	-52.49
SRD080	250	347.33	-89.4	SRD081	280	0.32	-52.41
SRD080	260	333.37	-89.42	SRD081	290	0.19	-52.42
SRD080	270	335.6	-89.44	SRD081	300	359.89	-52.44
SRD080	280	332.41	-89.43	SRD081	310	359.9	-52.5
SRD080	290	332.74	-89.44	SRD081	320	359.93	-52.56
SRD080	300	341.22	-89.49	SRD081	330	0.04	-52.61
SRD080	310	351.54	-89.42	SRD081	340	0.24	-52.63
SRD080	320	329.06	-89.44	SRD081	350	0.15	-52.64
SRD080	330	323.32	-89.47	SRD081	360	0.38	-52.27
SRD080	340	324	-89.5	SRD081	370	0.54	-52.15
SRD080	348	2.74	-89.33	SRD081	380	0.71	-52.18
SRD081	0	359.88	-54.4	SRD081	390	0.84	-52.09
SRD081	10	0.01	-54.45	SRD081	400	1.24	-51.94
SRD081	20	0.02	-54	SRD081	410	1.5	-51.91
SRD081	30	0.51	-54.09	SRD081	420	1.91	-51.78
SRD081	40	0.76	-54.31	SRD081	430	2.37	-51.61
SRD081	50	0.99	-54.25	SRD081	440	2.83	-51.52
SRD081	60	1.03	-54.03	SRD081	448	2.92	-51.38
SRD081	70	1.16	-53.95	SRD082	0	30	-55
SRD081	80	1.39	-53.85	SRD082	13	35	-55
SRD081	90	1.38	-53.92	SRD082	51	35	-54
SRD081	100	1.63	-53.8	SRD082	102	37	-53
SRD081	110	1.71	-53.85	SRD082	150	37	-54
SRD081	120	1.64	-53.56	SRD082	200	39	-53
SRD081	130	1.65	-53.37	SRD082	250.9	44	-53
SRD081	140	1.53	-53.3	SRD082	301.9	39	-53.5
SRD081	150	1.57	-53.13	SRD082	350	48	-53
SRD081	160	1.34	-52.99	SRD082	373.9	45	-53
SRD081	170	1.42	-53.01	SRD083	0	360	-90
SRD081	180	1.26	-52.89	SRD083	50	275	-88.5
SRD081	190	1.32	-52.78	SRD083	101	270	-89
SRD081	200	1.16	-52.63	SRD083	150	256	-89
SRD081	210	1.05	-52.43	SRD083	200	272	-89

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD083	251	315	-89	SRD088	101	330	-89
SRD083	299	264	-89	SRD088	152	315	-88.8
SRD083	350	295	-88.5	SRD088	200	25	-89
SRD084	0	360	-90	SRD089	0	0	-90
SRD084	50	150	-89.5	SRD089	10	34	-89
SRD084	100	140	-89.8	SRD089B	0	0	-90
SRD084	152	110	-89.2	SRD089B	50	305	-88.9
SRD084	200	130	-89.2	SRD089B	101	315	-89
SRD084	250	140	-89.3	SRD089B	152	316	-89.5
SRD084	299	225	-89.4	SRD089B	200	297	-89
SRD084	349.9	150	-89.2	SRD089B	250	49	-89
SRD085	0	360	-90	SRD090	0	0	-90
SRD085	50	225	-89.8	SRD090	203	70	-89.7
SRD085	100	220	-89.2	SRD090	254	160	-87
SRD085	150	140	-89	SRD090	305	140	-89.5
SRD085	200	150	-88.2	SRD090	344	195	-89.5
SRD085	250	165	-88.2	SRD091	0	0	-90
SRD085	300	143	-88.2	SRD091	93	60.3	-87
SRD085	351	135	-88.1	SRD091	123	56.2	-88
SRD085	400	135	-87.9	SRD091	153	60.7	-88
SRD085	450	135	-87.8	SRD091	161	75	-88
SRD085	504	150	-88	SRD091	186	78	-88
SRD086	0	360	-90	SRD091	219	65.8	-87
SRD086	52	340	-89	SRD091	294	74	-88
SRD086	102	305	-88.3	SRD091	324	84	-87
SRD086	154	300	-88.8	SRD091	357	75.7	-88
SRD086	201	310	-88.8	SRD091	390	84	-87
SRD086	252	335	-89	SRD091	432	79.4	-87
SRD086	303.7	320	-89	SRD091	450	74	-87
SRD086	357	300	-89	SRD092	0	0	-90
SRD086	399	265	-89.2	SRD092	90	208.2	-87.8
SRD086	453.3	295	-89	SRD092	120	220.2	-88
SRD087	0	360	-90	SRD092	171	205.2	-88
SRD087	8	360	-90	SRD092	204	209.2	-87.4
SRD087	62	75	-89	SRD092	240	193.2	-87.4
SRD087	122	360	-90	SRD092	288	137.8	-86.6
SRD087	182	360	-90	SRD092	318	195.3	-86.6
SRD088	0	360	-90	SRD092	363	195	-87
SRD088	50	320	-89	SRD092	393	192.6	-86.9

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD092	426	199	-87	SRD095	450	141.4	-88.8
SRD092	450	199	-86.6	SRD096	0	0	-89.4
SRD093	0	0	-90	SRD096	60	0	-87.9
SRD093	90	214.4	-88.6	SRD096	93	167	-86.7
SRD093	123	220.1	-89.2	SRD096	123	162	-87.2
SRD093	156	222.8	-88.8	SRD096	155	187	-87.2
SRD093	192	246.7	-88.6	SRD096	192	180	-86.9
SRD093	225	208.8	-89	SRD096	228	183	-86.8
SRD093	258	224.8	-88.4	SRD096	264	189	-86.5
SRD093	297	212.3	-89	SRD096	294	195	-86.8
SRD093	336	234.8	-88.9	SRD096	327	192	-86.3
SRD093	369	249.9	-89.1	SRD096	360	199	-86.1
SRD093	399	240.2	-88.8	SRD096	393	182	-86.6
SRD093	429	238.1	-88.7	SRD096	423	197	-86.6
SRD093	450	241.2	-88.8	SRD096	450	180	-86.2
SRD094	0	0	-90	SRD097	0	330	-60
SRD094	90	120	-89	SRD097	12.8	329	-60
SRD094	120	114	-89	SRD097	48.1	326	-60
SRD094	153	163	-89.7	SRD097	78.1	329	-61
SRD094	192	92	-89.4	SRD097	105.1	329	-59.5
SRD094	225	124	-88.9	SRD097	138.1	329	-60
SRD094	258	99	-89	SRD097	174.1	329	-58.5
SRD094	288	114	-88.8	SRD097	204.1	330	-58
SRD094	318	120	-89	SRD097	240.1	330	-58.5
SRD094	348	130	-88.8	SRD097	264.1	330	-58
SRD094	378	140	-88.8	SRD097	294.1	330	-57.5
SRD094	411	127	-89.1	SRD097	339.1	340	-57
SRD094	450	146	-88.7	SRD098	0	90	-60
SRD095	0	0	-90	SRD098	45.3	88	-60
SRD095	108	166.8	-88.2	SRD098	75.3	88	-60
SRD095	141	140.3	-88.5	SRD098	105.3	87	-60
SRD095	171	134.5	-88.4	SRD098	144.3	90	-60
SRD095	198	139.8	-88	SRD098	173.9	81	-60
SRD095	240	143.9	-88.5	SRD098	201.3	94	-60
SRD095	270	140.9	-88.7	SRD098	234.3	94	-60
SRD095	309	118.2	-88.8	SRD098	267.3	90	-60
SRD095	351	127.8	-88.4	SRD098	300.3	89	-60
SRD095	381	166	-88.6	SRD098	312.3	91	-59
SRD095	411	146.5	-88.5	SRD099	0	360	-90

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
SRD099	450.3	360	-90	TDRC010	0	0	-90
SRD100	0	297	-90	TDRC010	50	0	-90
SRD100	15	297	-90	TDRC011	0	0	-90
SRD100	87.3	290	-89	TDRC011	50	0	-90
SRD100	147.3	227	-89	TDRC012	0	0	-90
SRD100	261	121	-89	TDRC012	50	0	-90
SRD100	330.3	180	-89	TDRC013	0	0	-90
SRD100	393.3	204	-89	TDRC013	50	0	-90
SRD100	459.3	264	-89.5	WB001	0	0	-90
SRD100	513.3	288	-89	WB002	0	0	-90
SRD101	0	180	-90	WB003	0	0	-90
SRD101	18.1	153	-90	WB004	0	0	-90
SRD101	81.3	243	-90	WB004A	0	0	-90
SRD101	141.3	1	-90	WB005	0	0	-90
SRD101	204.3	331	-90	WB005A	0	0	-90
SRD101	264.3	116	-89	WB006	0	0	-90
SRD101	324.3	251	-89	WB006A	0	0	-90
SRD101	387.3	128	-89	WB007	0	0	-90
SRD101	447.3	141	-89	WB008	0	0	-90
SRD101	486.3	135	-89	WB008A	0	0	-90
SRD101	505.2	139	-90	WB009	0	0	-90
TDRC001	0	0	-90	WB009A	0	0	-90
TDRC001	50	0	-90	WB010	0	0	-90
TDRC002	0	0	-90	WB010A	0	0	-90
TDRC002	50	0	-90	YADD002	0	161	-50
TDRC003	0	0	-90	YADD002	30.48	161	-47
TDRC003	42	0	-90	YADD002	60.96	161	-45
TDRC004	0	0	-90	YADD002	91.44	161	-42
TDRC004	50	0	-90	YADD002	121.92	161	-41.5
TDRC005	0	0	-90	YADD002	152.4	161	-37.5
TDRC005	50	0	-90	YADD002	182.88	161	-34
TDRC006	0	0	-90	YADD002	213.36	161	-33
TDRC006	50	0	-90	YADD002	242.316	161	-32.5
TDRC007	0	0	-90	YADD003	0	159	-50
TDRC007	50	0	-90	YADD004	0	165	-50
TDRC008	0	0	-90	YADD004	30.48	165	-45
TDRC008	50	0	-90	YADD004	60.96	165	-45
TDRC009	0	0	-90	YADD004	91.44	165	-43
TDRC009	50	0	-90	YADD004	121.92	165	-42.5

DRILLHOLE	DEPTH	DIP	AZIMUTH	DRILLHOLE	DEPTH	DIP	AZIMUTH
YADD004	152.4	165	-42				
YADD004	182.88	165	-38.5				
YADD004	213.36	165	-35				
YADD004	239.5728	165	-35				

ERM HAS OVER 160 OFFICES ACROSS THE FOLLOWING COUNTRIES AND TERRITORIES WORLDWIDE

Argentina	The Netherlands
Australia	New Zealand
Belgium	Peru
Brazil	Poland
Canada	Portugal
China	Romania
Colombia	Senegal
France	Singapore
Germany	South Africa
Ghana	South Korea
Guyana	Spain
Hong Kong	Switzerland
India	Taiwan
Indonesia	Tanzania
Ireland	Thailand
Italy	UAE
Japan	UK
Kazakhstan	US
Kenya	Vietnam
Malaysia	
Mexico	
Mozambique	

ERM's Perth Office Level 3 1 Havelock Street, West Perth, WA 6872 T +61 8 6467 1600

www.erm.com